K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2021

Ta có \(S_{ABCD}=\dfrac{1}{2}AC\cdot BC=144\Rightarrow AC\cdot BD=288\)

Ta có M,N,P,Q là các trung điểm nên MN,NP,PQ,QM lần lượt là đtb \(\Delta ABC,\Delta BDC,\Delta ACD,\Delta ABD\)

Do đó \(MN=PQ=\dfrac{1}{2}BC;MN\text{//}PQ\Rightarrow MNPQ\text{ là hbh}\)

Mà \(NP\text{//}AC\Rightarrow NP\bot MN\left(AC\bot BD\right)\Rightarrow MNPQ\text{ là hcn}\)

\(\Rightarrow S_{MNPQ}=MN\cdot NP=\dfrac{1}{2}AC\cdot\dfrac{1}{2}BD=\dfrac{1}{4}\cdot288=72\left(cm^2\right)\)

13 tháng 3 2017

230 cm2

13 tháng 3 2017

Giải chi tiết giùm mình nha mấy bạn :))

a: Xét ΔABD có 

M là tđiểm của AB

Q là tđiểm của AD
Do đó:MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N là tđiểm của BC

P là tđiểm của CD

Do đó: NP là đường trung bình

=>NP=BD/2 và NP//BD(2)

Xét ΔABC có 

M là tđiểm của AB

N là tđiểm của BC

Do đó: MN là đường trung bình

=>MN=AC/2=BD/2(3)

Từ (1) và (3) suy ra MN=MQ

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

mà MN=MQ

nên MQPN là hình thoi

 

30 tháng 12 2021

a: Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

11 tháng 3 2017

Ad giải rõ ra rồi em bấm cho nha

11 tháng 3 2017

Chứ kì này "giang hồ" nhiều lắm !