K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

\(Ax^2-2A=-7x^2+6x+3!\)

\(x^2\left(A+7\right)-6x-2A-3=0\)

\(\text{Δ}=3^2=\left(2A+3\right)\left(A+7\right)>0\)

\(\orbr{\begin{cases}A< -6\\A>\frac{5}{2}\end{cases}}\)

A không có max và min

19 tháng 12 2021

NHẦM

\(A=\frac{-7x^2+6x+3}{x^2+2}\)

\(=\frac{2\left(x^2+2\right)-9x^2-6x-1}{x^2+2}\)

\(=\frac{2\left(x^2+2\right)-\left(9x^2-6x-1\right)}{x^2+2}\)

\(=\frac{2\left(x^2+2\right)-\left(3x-1\right)^2}{x^2+2}\)

\(=2-\frac{\left(3x-1\right)^2}{x^2+2}\)

Vì \(-\left(3x-1\right)^2< 0\text{∀}x\)

\(x^2+2>0\text{∀}x\)

\(-\frac{\left(3x-1\right)^2}{x^2+2}< 0\)

\(2-\frac{\left(3x-1^2\right)}{x^2+2}< 2-0=2\)

Vậy GTLN của \(A\)là \(2\)khi : \(\left(3x-1\right)^2=0\)

\(x=\frac{1}{3}\)

19 tháng 12 2021

\(\Leftrightarrow Ax^2-2A=-7x^2+6x+3\\ \Leftrightarrow x^2\left(A+7\right)-6x-2A-3=0\\ \Leftrightarrow\Delta'=3^2+\left(2A+3\right)\left(A+7\right)\ge0\\ \Leftrightarrow2A^2+17A+30\ge0\\ \Leftrightarrow\left[{}\begin{matrix}A\le-6\\A\ge-\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow A\text{ ko có max và min}\)

\(A=\frac{2x^2+6x+10}{x^2+3x+3}=\frac{2\left(x^2+3x+3\right)+4}{x^2+3x+3}=2+\frac{4}{x^2+3x+3}\)

Để A đạt GTLN thì x2+3x+3 bé nhất

mà x2+3x+3=\(x^2+3.\frac{2}{3}x+\frac{2^2}{3^2}+\frac{23}{9}=\left(x+\frac{2}{3}\right)^2+\frac{23}{9}\ge\frac{23}{9}\)

Dấu "=" xảy ra khi \(x+\frac{2}{3}=0=>x=\frac{-2}{3}\)

lúc đó \(A=2+\frac{4}{\frac{23}{9}}=2+4.\frac{9}{23}=2+\frac{36}{23}=\frac{82}{23}\)

Vậy GTLN của \(A=\frac{82}{23}\)khi \(x=\frac{-2}{3}\)

14 tháng 4 2018

Giải:

a) Ta có: \(-x^2-6x+15\)

\(=-x^2-6x-9+24\)

\(=-\left(x^2+6x+9\right)+24\)

\(=-\left(x+3\right)^2+24\)

\(-\left(x+3\right)^2\le0;\forall x\)

\(\Leftrightarrow-\left(x+3\right)^2+24\le24\)

Vậy giá trị lớn nhất của biểu thức trên là 24.

Câu b làm tương tự (phân tích đa thức thành nhân tử hoặc đưa về dạng hằng đẳng thức).

14 tháng 4 2018

a)

\(E=-x^2-6x+15\)

\(E=-\left(x^2+6x-15\right)\)

\(E=-\left(x^2+2.x.3+9-24\right)\)

\(E=-\left(x+3\right)^2+24\)

Ta có: \(-\left(x+3\right)^2\le0\) với mọi x thuộc R

\(\Rightarrow-\left(x+3\right)^2+24\le24\)

Vậy GTLN của E = 24 khi x = -3

21 tháng 7 2016

a) ĐKXĐ: \(x\ne\left\{-3;-\frac{1}{3}\right\}\)

Ta có: \(\frac{3x-1}{3x+1}+\frac{x-3}{x+3}=\)\(\frac{\left(3x-1\right)\left(x+3\right)+\left(x-3\right)\left(3x+1\right)}{\left(3x+1\right)\left(x+3\right)}\)=\(\frac{3x^2+9x-x-3+3x^2+x-9x-3}{3x^2+9x+x+3}\)

          =  \(\frac{6x^2-6}{3x^2+10x+3}\)

=>  \(\frac{6x^2-6}{3x^2+10x+3}=2\)

<=> \(6x^2-6=6x^2+20x+6\)

<=> 20x=12

<=>x=\(\frac{12}{20}=\frac{3}{5}\)

Vậy x=3/5

 

DD
6 tháng 11 2021

a) \(A=6x-x^2-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)

Dấu \(=\)khi \(x-3=0\Leftrightarrow x=3\).

b) \(B=x^2-5x-2=x^2-2.\frac{5}{2}x+\left(\frac{5}{2}\right)^2-\frac{33}{4}=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge-\frac{33}{44}\)

Dấu \(=\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\).

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

5 tháng 12 2019

1

a) 4y^3 x 14x^3

5 tháng 12 2019

Bài 1 a)=56x3y3/7x2yy=xy2

Bai

NV
17 tháng 8 2021

\(E=-\left(x^4+10x^2+9+6x^3+6x\right)+24\)

\(=-\left[\left(x^2+9\right)\left(x^2+1\right)+6x\left(x^2+1\right)\right]+24\)

\(=-\left(x^2+1\right)\left(x^2+9+6x\right)+24\)

\(=-\left(x^2+1\right)\left(x+3\right)^2+24\le24\)

\(E_{max}=24\) khi \(x=-3\)