cho tổng A=1/10+1/11+1/11+1/12+...+1/99+1/100
chứng tỏ A>1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Thăng Phạm - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài bạn làm nhé!
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
\(A=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)
\(A=\frac{1}{10}+\frac{99}{100}>1\)
=> A > 1
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=> A>1
Ta có :
A = \(\dfrac{1}{10}\) + \(\dfrac{1}{11}\) + \(\dfrac{1}{12}\) +.................+ \(\dfrac{1}{99}\) + \(\dfrac{1}{100}\) ( 91 số hạng)
A = \(\dfrac{1}{10}\) + \(\left(\dfrac{1}{11}+\dfrac{1}{12}+...........+\dfrac{1}{99}+\dfrac{1}{100}\right)\)
Vì \(\dfrac{1}{11}>\dfrac{1}{100}\)
\(\dfrac{1}{12}>\dfrac{1}{100}\)
.................................
\(\dfrac{1}{99}< \dfrac{1}{100}\)
\(=>\) \(A\) > \(\dfrac{1}{10}+\left(\dfrac{1}{100}+\dfrac{1}{100}+........+\dfrac{1}{100}\right)\) (90 số hạng \(\dfrac{1}{100}\) )
A > \(\dfrac{1}{10}+\dfrac{90}{100}\)
\(A\) > \(\dfrac{1}{10}+\dfrac{9}{10}\)
=> A > 1
=> đpcm
Chỉ cần 30 số hạng đầu đã lớn hơn 1.
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=>
1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1
\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
\(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)
\(\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+...+\frac{1}{39}>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
\(\frac{13}{12}\) \(>\) \(1\)
\(A > \frac{1}{10} + (\frac{1}{100}+...+ \frac{1}{100}) \)
\(= \frac{1}{10} + \frac{99}{100} = \frac{109}{100} > 1\)
\(=> A > 1\)