Cho đường tròn tâm O và dây AB không qua O. Gọi H là trung điểm AB, tia OH cắt cung lớn AB tại M. Một dây CD đi qua H
A) Chứng minh:Cung MA=cung MB
B) So sánh số đo các cung nhỏ AB và CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AID=1/2(sđ cung AD+sđ cung CB)
=1/2(sđ cung MD+sđ cung MC)
=1/2*sđ cung CD
=góc DAI
=>ΔAID cân tại D
b: góc PAI=góc PDI(1/2sđ cung MC=1/2sđ cung CB)
=>PDAI nội tiếp
1: góc CND=1/2*180=90 độ
Vì góc CNE+góc CKE=180 độ
nên CNEK nội tiếp
2: Xét ΔMNE và ΔMBC có
góc MNE=góc MBC
góc M chung
=>ΔMNE đồng dạng với ΔMBC
=>MN/MB=ME/MC
=>MN*MC=MB*ME
a: Xét (O) có
\(\widehat{AOM}=\stackrel\frown{AM}\)
\(\widehat{BOM}=\stackrel\frown{BM}\)
mà \(\widehat{AOM}=\widehat{BOM}\)
nên \(\overrightarrow{MA}=\stackrel\frown{MB}\)