K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2022

Ta có : n- n + 2 = n(n2 - 1)(n2 + 1)  + 2 = n(n -1)(n +1)(n2 + 1) + 2

Vì (n-1)n(n+1) là tích 3 số nguyên liên tiếp nên (n-1)n(n+1) chia hết cho 3 => (n -1)n(n +1)(n+ 1) + 2 chia cho 3 dư 2

Mà số chính phương chia cho 3 chỉ dư 0 hoặc 1 nên không có số tự nhiên n thỏa mãn  để n5 - n + 2 là số chính phương

28 tháng 2 2022

mình sorry mình chưa đọc kĩ đề nên trả lời nhầm

31 tháng 8 2015

n- n + 2 = n(n2 - 1)(n2 + 1)  + 2 = n(n -1)(n +1)(n2 + 1) + 2

Vì (n-1)n(n+1) là tích 3 số nguyên liên tiếp nên tích đó chia hết cho 3 => n(n -1)(n +1)(n+ 1) + 2 chia cho 3 dư 2

Mà số chính phương chia cho 3 chỉ dư 0 hoặc 1 => không có số nguyên n để n5 - n + 2 là số chính phương

11 tháng 9 2023

lam cho minh cau P=3^2n+36n+1 chia het cho 13

 

9 tháng 12 2015

1)Đặt n + 1945 = a² (1) (a là số tự nhiên) 
Đặt n + 2004 = b² (2) (b là số tự nhiên) 
Do (n + 2004) > (n + 1945) 
=> b² > a² 
=> b > a (Do a và b là số tự nhiên) 
Từ (1) và (2) => b² - a² = (n + 2004) - (n + 1945) 
<=> (b + a)(b - a) = n + 2004 - n - 1945 
<=> (b + a)(b - a) = 59 
=> (b + a) và (b - a) là ước tự nhiên của 59 
Ta có ước tự nhiên của 59 là các số: 1;59 (59 là số nguyên tố) Kết hợp với (b + a) > (b - a) (do a và b là số tự nhiên) ta có: 
b + a = 59 (3) và b - a = 1 (4) 
cộng vế với vế của (3) và (4) ta được: 
(b + a) + (b - a) = 59 + 1 
<=> b + a + b - a = 60 
<=> 2b = 60 
<=> b = 30 
Thay b = 30 vào (2) ta được 
n + 2004 = 30² 
<=> n + 2004 = 900 
<=> n = 900 - 2004 
<=> n = -1104 
Vậy với n = -1104 thì n+ 1945 và n + 2004 đều chính phương

9 tháng 12 2015

n =900 -2004 = - nhé

 

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

3 tháng 3 2023

Help nhanh vơi 

21 tháng 12 2018

Có thể nêu cách giải giúp mik đc ko?

22 tháng 1 2015

Bài này hay thật mình thì chỉ nghĩ ra mỗi cách này. Nhưng ko biết vs học phô thông thì tư duy thế nào

 1 số chính phương có tận cùng bằng 0,1,4,5,6,9
N+1 tận cùng =9=> n tận cùng bằng 8 => 2n+1 tận cùng =7 => loại
(2n+1)-(n+1)=n=a^2-b^2=(a-b)(a+b)
2n+1 là số lẻ => a lẻ
N chẵn=> b chẵn
1 số chính phương chia cho 4 dư 0 hoặc 1 => (a+b)(a-b) chia hết cho 8

Còn nó chia hết cho 3 hay không thì phải dùng định lý của fermat đẻ giải 

http://en.wikipedia.org/wiki/Fermat%27s_little_theorem

như vậy chưng minh no chia het cho 8 và 3 là có thể két luạn nó chia hêt cho 24

21 tháng 6 2020

ùi hơi khó thế này thì có làm đc ko