K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

Tìm GTLN của \(A=\frac{-7x^2+6x+3}{x^2+2}\)

19 tháng 12 2021

đkxđ \(x-2\ge0\Leftrightarrow x\ge2\)

phương trình đã cho \(\Leftrightarrow\left[\left(x-8\right)\sqrt{x-2}\right]^2=4\)\(\Leftrightarrow\left(x^2-16x+64\right)\left(x-2\right)=4\)

\(\Leftrightarrow x^3-2x^2-16x^2+32x+64x-128=4\)

\(\Leftrightarrow x^3-18x^2+96x-132=0\)

Tới đây bạn bấm máy Casio giải được rồi.

12 tháng 9 2021

\(a,M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\left(x>0;x\ne1\right)\\ M=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\\ M=\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\\ M=\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(b,M=-\dfrac{1}{2}\Leftrightarrow\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=-\dfrac{1}{2}\\ \Leftrightarrow-4x=x+\sqrt{x}-2\\ \Leftrightarrow5x+\sqrt{x}-2=0\)

Đặt \(\sqrt{x}=t\)

\(\Leftrightarrow5t^2+t-2=0\\ \Delta=1^2-4\cdot5\left(-2\right)=41\\ \Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-1-\sqrt{41}}{10}\\t=\dfrac{-1+\sqrt{41}}{10}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(1+\sqrt{41}\right)^2}{100}=\dfrac{-42-2\sqrt{41}}{100}\\x=\dfrac{\left(\sqrt{41}-1\right)^2}{100}=\dfrac{42-2\sqrt{41}}{100}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-21-\sqrt{41}}{50}\left(L\right)\\x=\dfrac{21-\sqrt{41}}{50}\left(N\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{21-\sqrt{41}}{50}\)

a: Ta có: \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}+\dfrac{x-2}{x\sqrt{x}+x}\right)\)

\(=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2+x-2}{x\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x}{\sqrt{x}-1}\cdot\dfrac{x}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2x\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

19 tháng 10 2021

a) Tại x=16 thì A = \(\dfrac{\sqrt{16}-1}{\sqrt{16}+2}=\dfrac{4-1}{4+2}=\dfrac{1}{2}\)

b) B = \(\dfrac{\sqrt{x}+1+\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\div\dfrac{\sqrt{x}}{x+\sqrt{x}}\)

        = \(\dfrac{\sqrt{x}+1+x-\sqrt{x}}{x+\sqrt{x}}\times\dfrac{x+\sqrt{x}}{\sqrt{x}}\) 

        = \(\dfrac{x+1}{\sqrt{x}}\)

B = \(\dfrac{x+1}{\sqrt{x}}\)= 2

   ⇒ x + 1 = 2\(\sqrt{x}\) 

   ⇒ x - \(2\sqrt{x}\) +1 = 0

   ⇒ \(\left(\sqrt{x}-1\right)^2\) = 0

   ⇒ \(\sqrt{x}-1=0\)

⇒  x = 1 

7 tháng 7 2021

\(3x\left(x+1\right)-2x\left(x+2\right)=1+x^2\)

3x2+3x-2x2-4x=1+x2

3x2+3x-2x2-4x-x2=1

x=-1

vậy............

 

a: \(=\dfrac{x-2x-1}{x+1}=\dfrac{-\left(x+1\right)}{x+1}=-1\)

b: \(=\dfrac{2+2x}{x\left(x+1\right)}=\dfrac{2\left(x+1\right)}{x\left(x+1\right)}=\dfrac{2}{x}\)

c: \(=\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{18x^2-12x+2}{2\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{2\left(3x-1\right)^2}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)

10 tháng 4 2023

x² + x - 12 = 0

⇔ x² + 4x - 3x - 12 = 0

⇔ (x² + 4x) - (3x + 12) = 0

⇔ x(x + 4) - 3(x + 4) = 0

⇔ (x + 4)(x - 3) = 0

⇔ x + 4 = 0 hoặc x - 3 = 0

*) x + 4 = 0

⇔ x = -4

*) x - 3 = 0

⇔ x = 3

A = x₁² + x₂² + x₁².x₂ + x₁.x₂²

= (-4)² + 3² + (-4)².3 + (-4).3²

= 16 + 9 + 48 - 36

= 37

22 tháng 12 2021

\(\Rightarrow\dfrac{2}{3}:x=\dfrac{5}{3}\Rightarrow x=\dfrac{2}{3}:\dfrac{5}{3}=\dfrac{2}{5}\)

22 tháng 12 2021

 

 

a) Thay x=-1 vào A(x), ta được:

\(A\left(-1\right)=-1+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+...+\left(-1\right)^{99}+\left(-1\right)^{100}\)

\(=-1+1-1+1+...+\left(-1\right)+1\)

=0

Vậy: x=-1 là nghiệm của đa thức A(x)

Thay x=-1 vào A(x), ta được:

A(−1)=−1+(−1)2+(−1)3+(−1)4+...+(−1)99+(−1)100A(−1)=−1+(−1)2+(−1)3+(−1)4+...+(−1)99+(−1)100

=−1+1−1+1+...+(−1)+1=−1+1−1+1+...+(−1)+1

=0

Vậy: x=-1 là nghiệm của đa thức A(x)

AH
Akai Haruma
Giáo viên
15 tháng 6 2023

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ góc trái khung soạn thảo). Viết đề thế này khó đọc lắm.

24 tháng 5 2021

`x^4+3x^2-2=0`

Đặt `x^2=t(t>=0)`

`pt<=>t^2+3t-2=0`

`<=>t^2+3t+9/4=17/4`

`<=>(t+3/2)^2=17/4`

`<=>t+3/2=sqrt{17}/2(do \ t>=0=>t+3/2>=3/2)`

`<=>t=(sqrt{17}-3)/2`

`<=>x^2=(sqrt{17}-3)/2`

`<=>x=+-sqrt{(sqrt{17}-3)/2}`

25 tháng 7 2021

a) (x-2)3+6(x+1)2-x3+12=0

\(\Rightarrow\)x3-6x2+12x-8+6(x2+2x+1)-x3+12=0

\(\Rightarrow\)x3-6x2+12x-8+6x2+12x+6-x3+12=0

\(\Rightarrow\)24x+10=0

\(\Rightarrow\)24x=-10

\(\Rightarrow\)x=\(\dfrac{-10}{24}=\dfrac{-5}{12}\)

25 tháng 7 2021

b)(x-5)(x+5)-(x+3)2+3(x-2)2=(x+1)2-(x-4)(x+4)+3x2

\(\Rightarrow\)x2-25-(x2+6x+9)+3(x2-4x+4)=x2+2x+1-(x2-16)+3x2

\(\Rightarrow\)x2​-25-x2-6x-9+3x2-12x+12=x2+2x+1-x2+16+3x2

\(\Rightarrow\)3x2-18x-22=3x2+2x+17

\(\Rightarrow\)3x2-18x-22-3x2-2x-17=0

\(\Rightarrow\)-20x-39=0

\(\Rightarrow\)-20x=39

\(\Rightarrow\)x=\(-\dfrac{39}{20}\)