GTLN cua: B=3^2.10-Ix+2I^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì / x-2 / luôn lớn hơn hoặc bằng 0, suy ra: / x-2 / + 3 luôn lớn hơn hoặc bằng 3
Để D có giá trị lớn nhất thì / x-2 / +3=3
Vậy giá trị lớn nhất của biểu thức trên là : 1/3
Áp dụng bđt \(\left|a\right|-\left|b\right|\le\left|a-b\right|\) ta có:
\(A=\left|x+5\right|-\left|x-2\right|\le\left|x+5-x+2\right|=7\)
Dấu "=" xảy ra khi:\(\left\{{}\begin{matrix}x+5\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\x\ge2\end{matrix}\right.\)
Vậy \(x\ge2\) thì \(max_A=7\)
theo bài ra ta có : I x + 5 I > hoặc = x + 5 với mọi x
I x - 2 I > hoặc = x-2 với mọi x
xuy ra A = Ix+5I - Ix-2I > hoặc = x + 5 - x - 2 = 3
xuy ra A > hoặc = 3
vậy giá trị lớn nhất của A là 3
P/S : làm hơi hâm tý thông cảm nhoa
#)Giải :
a) \(\left|x-1\right|+\left|x+2\right|=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)
b) \(\left|2x-1\right|+\left|y^2-y\right|=0\Leftrightarrow\orbr{\begin{cases}2x-1=0\\y^2-y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=1\\y^2=y\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\y\in\left\{-1;0;1\right\}\end{cases}}}\)
a) /x+2/ - x = 2
=> /x+2/ = 2+x
=> x = 0
b) /x-3/ + x-3 = 0
=> /x-3/ = 0 + x-3 = x- 3
=> x = 0
c) /x+1/ + /x+2/ = 1
<=> /2x/ + 3 = 1
<=> /2x/ = 1- 3 = - 2
=> không có x vì /2x/ ≥ 0
d) /x- 5/ + x - 8 = 6
/x- 5/ + x = 6+8 = 14
=> chịu, bài này mik ko làm dc
=> mí bài kia ko pix có đúng ko nữa
Để B=3^2.10-|x+2|^2 đạt giá trị lớn nhất thì |x+2|^2 đạt GTNN. Mà |x+2|^2 đạt GTNN nên x=-2=>|-2+2|^2=0
=> 3^2.10-0=9.10=90
Vậy GTLN cua: B=3^2.10-Ix+2I^2 = 90