K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác MAOB có

\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét (O) có 

\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{CAM}\) là góc tạo bởi dây cung CA và tiếp tuyến AM

Do đó: \(\widehat{ADC}=\widehat{CAM}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)

hay \(\widehat{MDA}=\widehat{MAC}\)

Xét ΔMDA và ΔMAC có 

\(\widehat{MDA}=\widehat{MAC}\)(cmt)

\(\widehat{AMD}\) là góc chung

Do đó: ΔMDA∼ΔMAC(g-g)

\(\dfrac{MD}{MA}=\dfrac{MA}{MC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(MA^2=MC\cdot MD\)(đpcm)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔOAM vuông tại A có AH là đường cao ứng với cạnh huyền OM, ta được:

\(MA^2=MH\cdot MO\)(2)

Từ (1) và (2) suy ra \(MH\cdot MO=MC\cdot MD\)(đpcm)

10 tháng 4 2022

c) để chứng minh EC là tiếp tuyến:

chứng minh tứ giác OECH nội tiếp thì ta sẽ có góc OHE=OCE=90o(đpcm)

=> cần chứng minh tứ giác OECH nội tiếp:

ta có: DOC=DHC (ccc CD)

xét MHC=MDO (tam giác MCH~MOD)= OCD (vì DO=OC)=OHD (cùng chắn OD) => HA là phân giác CHD

DOC=DHC => 1/2 DOC= 1/2 DHC =COE=CHE

mà COE với CHE cùng chắn cung CE trong tứ giác OHCE nên tứ giác đấy nội tiếp => xong :))))

loading...  loading...  

a: Phải vì góc này tạo bởi tiếp tuyến MA và day cung AB

b: Xét ΔMOA vuông tại A có cosMOA=OA/OM=1/2

=>góc MOA=60 độ

sđ cung AB=2*60=120 độ

c: Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB tại H

=>MH*MO=MA^2

Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC=MH*MO

 

12 tháng 3 2023

Giúp mình giải câu e với ạ

21 tháng 3 2023

Ai giúp em với ạ

loading...  loading...  

a: ΔOCD cân tại O có OK là đường trung tuyến

nên OK vuông góc CD

góc OKM=góc OAM=góc OBM=90 độ

=>O,K,M,A,B cùng thuộc đường tròn đường kính OM

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA=1/2sđ cung AC

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA

=>MA^2=MD*MC

=>MD*MC ko phụ thuộc vào cát tuyến MCD

 

Xét ΔMBC và ΔMDB có

góc MBC=góc MDB

góc BMC chung

=>ΔMBC đồng dạng với ΔMDB

=>MB/MD=MC/MB

=>MB^2=MD*MC

12 tháng 3 2023

cảm ơn bạn

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC

a) Xét tứ giác OAMC có 

\(\widehat{OAM}\) và \(\widehat{OCM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OCM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OAMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a: góc OAM+góc OCM=180 độ

=>OAMC nội tiếp

b: CE//BD

=>góc AKM=góc AEC=góc ACM

=>AKCM nội tiếp

=>A,K,C,M cùng nằm trên 1 đường tròn

=>góc OKM=90 độ

=>K là trung điểm của BD