K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

c: BM=CM=3cm

=>AM=4cm

 

5 tháng 4 2022

a. Xét tam giác AMB và tam giác AMC:

    AB = AC

    AM chung

    BM = CM (trung tuyến AM hạ từ A đến BC)

   => tam giác AMB = tam giác AMC

=> góc BAM = góc CAM (2 góc tương ứng)=>AM là tia phân giác của góc BACb. đề bài bị thiếuc. ta có BM = CM(cma)   => BM = CM = \(\dfrac{BC}{2}\)\(\dfrac{6}{2}\)= 3(cm)  Áp dụng định lí Pi-ta-go vào tam giác ABM:     AB2 = BM2 + AM2=> AM= AB2 - BM2     AM2 = 52 - 32 = 25 - 9 = 16(cm)=> AM = 4 cm  

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM vừa là đường cao vừa là đường phân giác

Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK

b: Ta có: ΔAHK cân tại A

mà AM là đường phân giác

nên AM là đường trung trực của HK

10 tháng 5 2021

                                                                                            Giải

Xét tam giác AMB và tam giác AMC

AM chung

AB=AC(gt)

MB=MC(AM là trung tuyến của tam giác ABC)

Vậy tam giác AMB= tam giác AMC(c.c.c)

Suy ra :góc BAM = góc CAM

Suy ra AM là hân giác của gócA

Ý b

Vì tam giác AMB= tam giác AMC(cmt)

suy ra 

góc AMB= góc AMC

có góc AMB+AMC=180 độ

mà góc AMB=góc AMC=90 độ

Suy ra AM vuông góc với BC

tam giác AMB vuông tại B

Ý c

Vì MB=MC=3cm

Áp dụng định lý PI-TA-GO và tam giác vuông ta có

AB^2=MB^2+MA^2

25=9+MA^2

MA^2=16

MA=4cm

11 tháng 3 2023

a) Xét hai tam giác vuông: \(\Delta AMB\) và \(\Delta HMB\) có:

BM là cạnh chung

\(\widehat{ABM}=\widehat{HBM}\) (do BM là phân giác của \(\widehat{ABC}\))

\(\Rightarrow\Delta AMB=\Delta HMB\) (cạnh huyền-góc nhọn)

b) Do \(\Delta AMB=\Delta HMB\) (cmt)

\(\Rightarrow AM=HM\) (hai cạnh tương ứng)

c) \(\Delta MHC\) vuông tại H

\(\Rightarrow MC\) là cạnh huyền nên là cạnh lớn nhất

\(\Rightarrow HM< MC\)

Lại có HM = AM (cmt)

\(\Rightarrow AM< MC\)