K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2023

Ta có: 2�−3⋮�+1

⇔−5⋮�+1

⇔�+1∈{1;−1;5;−5}

hay 

19 tháng 4 2023

2n-3 chia hết cho n+1

=> 2n+2-5  chia hết cho n+1

=> 2(n+1)-5  chia hết cho n+1

Mà 2(n+1)  chia hết cho n+1 => 5  chia hết cho n+1

=> n+1 thuộc Ư(5) ={1;-1;5;-5}

TH1: n+1=1 => n=0 thuộc Z

TH2: n+1=-1 => n=-2 thuộc Z

TH3: n+1=5 => n=4 thuộc Z

TH4: n+1=-5 => n=-6 thuộc Z

=> n thuộc {0;-2;4;6}

14 tháng 2 2018

\(n^2+7n+2=n\left(n+4\right)+3\left(n+4\right)-10\)

Để biểu thức chia hết thì \(n+4\inƯ\left(10\right)\)

Bạn tự giải tiếp nk.

14 tháng 2 2018

cảm ơn bn nhak

10 tháng 2 2019

a/ \(M=\frac{2n-7}{n-5}=\frac{2n-10+3}{n-5}=\frac{2\left(n-5\right)+3}{n-5}=\frac{2\left(n-5\right)}{n-5}+\frac{3}{n-5}\)

Để \(\frac{2n-7}{n-5}\) có giá trị nguyên thì \(3⋮\left(n-5\right)\)

=> \(n-5\inƯ\left(3\right)=\left(-3;-1;1;3\right)\)

Nếu n - 5 = -3 => n = -3 + 5 => n = 2

Nếu n - 5 = -1 => n = -1 + 5 => n = 4

Nếu n - 5 = 1 => n = 1 + 5 => n = 6

Nếu n - 5 = 3 => n = 3 + 5 => n = 8

Vậy \(n\in\left\{2;4;6;8\right\}\)

10 tháng 2 2019

\(M=\frac{2n-7}{n-5}=\frac{2\left(n-5\right)-7+10}{n-5}=\frac{2\left(n-5\right)+3}{n-5}=2+\frac{3}{n-5}\)

Với n thuộc Z để M nguyên 

\(\Leftrightarrow3⋮n-5\)

\(\Rightarrow n-5\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n\in\left\{5;4;8;2\right\}\)

Vậy...................................

\(3x+2⋮x-1\Rightarrow3\left(x-1\right)+5⋮x-1\)

\(\Rightarrow5⋮x-1\Rightarrow x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow x\in\left\{2;0;5;-4\right\}\)

Vậy............................

19 tháng 6 2020

Bài làm:

a) Ta có: \(\hept{\begin{cases}4n-1⋮n-1\\n-1⋮n-1\end{cases}\Rightarrow\hept{\begin{cases}4n-1⋮n-1\\4n-4⋮n-1\end{cases}}}\)

\(\Rightarrow4n-1-\left(4n-4\right)⋮n-1\)

\(\Rightarrow3⋮n-1\)

\(\Rightarrow n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow n\in\left\{-2;0;2;4\right\}\)

Vậy \(n\in\left\{-2;0;2;4\right\}\)

b) Ta có: \(\hept{\begin{cases}n-1⋮n^2-2\\n^2-2⋮n^2-2\end{cases}\Rightarrow\hept{\begin{cases}n^2-n⋮n^2-2\\n^2-2⋮n^2-2\end{cases}}}\)

\(\Rightarrow n^2-2-\left(n^2-n\right)⋮n^2-2\)

\(\Rightarrow n-2⋮n^2-2\), mà ta có \(n-1⋮n^2-2\)

\(\Rightarrow n-1-\left(n-2\right)⋮n^2-2\)

\(\Rightarrow1⋮n^2-2\)

\(\Leftrightarrow n^2-2\inƯ\left(1\right)=\left\{-1;1\right\}\)

\(\Leftrightarrow n^2\in\left\{1;3\right\}\)

Mà nếu n2 = 3 thì n không là số nguyên

\(\Rightarrow n^2=1\Leftrightarrow\orbr{\begin{cases}n=1\\n=-1\end{cases}}\)

Vậy \(\orbr{\begin{cases}n=1\\n=-1\end{cases}}\)

Học tốt!!!!

8 tháng 1 2016

-2 bạn à

tick mình nhé

8 tháng 1 2016

Ta có:

n + 3 chia hết cho n + 3

n(n  +3) chia hết cho n + 3

n^2 + 3n chia hết cho n + 3

n^2 + 7 chia hết cho n + 3

=> [(n^2 + 3n) - (n^2 + 7)] chia hết cho n + 3

3n - 7 chia hết cho n + 3

n + 3 chia hết cho n + 3

3(n + 3) chia hết cho n + 3

3n + 9 chia hết cho n + 3

=> [(3n  + 9) - (3n - 7)] chia hết cho n + 3

16 chia hết cho n + 3

n + 3 thuộc U(16) = {-16 ; -8 ; -4 ; -2 ; -1 ; 1 ; 2;  4 ; 8 ; 16}

n thuộc {-19 ; -11 ; -7 ; -5 ; -4 ; -2 ; -1 ; 1 ; 5 ; 13}