Tìm tận cùng của \(2017^{2^{2018}}\)+ 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2017 2018 = 20172016 x 20172
=[20174]504 x 20172
=[...1]504 x [...9]
= [...1] x [...9]
=[...9]
Vậy tận cùng số 20172018 là 9
Học tốt
2016 mũ 2017 có chữ số tận cùng là 6+2017 mũ 2018 có chữ số tận cùng là 3+2018 mũ 2019 có chữ số tận cùng là 2+chữ số tận cùng của 2019 mũ 2020 có chữ số tận cùng là 1=12
suy ra: chữ số tận cùng của 2016 mũ 2017+2017 mũ 2018+2018 mũ 2019+2019 mũ 2020 là 2
22017=24x504+1=(...6)504x2=(...6)x2=(...2) suy ra tận cùng của 22017 là 2
32018=34x504+2=(...1)504x32=(...1)x9=(...9) suy ra tận cùng của 32018 là 9
Ta có : 20172018 = ( 20172 )1009 = ( .....9 )1009
Vì ( .....9 )2n+1 có chữ số tận cùng là 9 => ( ......9 )1009 có chữ số tận cùng là 9
=> 20172018 có chữ số tận cùng là 9
Bài làm
A = 1 + 4 + 42 + 43 + 44 + 45 + ... + 42017 + 42018
4A = 4.(1 + 4 + 42 + 43 + 44 + 45 + ... + 42017 + 42018) = 4 + 42 + 43 + 44 + 45 + 46 + ... + 42018 + 42019
4A - A = (4 + 42 + 43 + 44 + 45 + 46 + ... + 42018 + 42019) - (1 + 4 + 42 + 43 + 44 + 45 + ... + 42017 + 42018)
=> 3A = 42019 - 1
=> A = (42019 - 1) : 3
Mk chỉ bít làm vậy thui sorry bn nhen
HOK TỐT !
Với số số tự nhiên k > 0
Ta có: \(4^{2k}\) có số tận cùng là 6 và \(4^{2k-1}\) có số tận cùng là 4
Hay \(4^{2k-1}\equiv4\left(mod10\right);4^{2k}\equiv-4\left(mod10\right)\)
=> \(4^{2k-1}+4^{2k}\equiv0\left(mod10\right)\)
=> \(A=1+\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2017}+4^{2018}\right)\equiv1+0+0+...+0\) (mod 10)
=> \(A\equiv1\left(mod10\right)\)
=> A có số tận cùng là 1
ta có
\(2017^{2^{2018}}=7^{2^{2018}}\left(mod10\right)\)
mà \(7^{2^{2018}}=49^{2^{2017}}=9^{2^{2017}}=81^{2^{2016}}=1^{2^{2016}}\left(mod10\right)\)
do đó số tận cùng của \(2017^{2^{2018}}\)là 1 hay
số tận cùng của \(2017^{2^{2018}}+1\) là 2