M =\(\dfrac{2}{x-1}+\dfrac{4}{x+1}+\dfrac{7x+15}{x^2-1}\)
a, Rút gọn M
b, Tính giá trị của M tại x = -12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=\(\dfrac{1}{x-1}-\dfrac{4}{x+1}+\dfrac{7x-1}{x^2-1}\)
a, Rút gọn M
b, Tính giá trị của M tại x = -3
\(a,M=\dfrac{x+1-4x+4+7x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\\ b,x=-3\Rightarrow M=\dfrac{4}{-3-1}=-1\)
b.\(M=\dfrac{1}{-3-1}-\dfrac{4}{-3+1}+\dfrac{7\left(-3\right)-1}{\left(-3\right)^2-1}\)
\(M=\dfrac{-1}{4}-\left(-2\right)+\dfrac{11}{5}=3,95\)
`a,` Với `x=3`
\(B=\dfrac{x^2-x}{2x+1}\\ \Rightarrow\dfrac{3^2-3}{2\cdot3+1}\\ =\dfrac{9-3}{6+1}\\ =\dfrac{6}{7}\)
`b,` Ta có `M=A*B`
\(M=\left(\dfrac{1}{x-1}+\dfrac{x}{x^2-1}\right)\cdot\dfrac{x^2-x}{2x+1}\\ =\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{x\left(x-1\right)}{2x+\text{ }1}\\ =\left(\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{x\left(x-1\right)}{2x+1}\\ =\dfrac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x\left(x-1\right)}{2x+1}\\ =\dfrac{2x+1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x\left(x-1\right)}{2x+1}\\ =\dfrac{x}{x+1}\)
`c,` Để `M=1/2`
`=> x/(x+1)=1/3`
`<=> (3x)/(3(x+1))= (x+1)/(3(x+1))`
`<=> 3x=x+1`
`<=>3x-x=1`
`<=>2x=1`
`<=>x=1/2`
a: \(M=\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}\right):\dfrac{x-1-x+3}{x-1}\)
\(=\dfrac{x^2-1-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x-1}{2}\)
\(=\dfrac{-2x+2}{2\left(x+1\right)}\cdot\dfrac{1}{2}=\dfrac{-x+1}{2}\)
b: Thay x=-1/2 vào M, ta được:
\(M=\dfrac{\dfrac{1}{2}+1}{2}=\dfrac{3}{2}:2=\dfrac{3}{4}\)
a, \(M=\left(\dfrac{x^2-1-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\left(\dfrac{x-1-x+3}{x-1}\right)\)
\(=\left(\dfrac{-1+x-3x-3}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{2}{x-1}=\dfrac{-2x-4}{2\left(x-1\right)\left(x+1\right)}:\dfrac{2}{x-1}=\dfrac{-\left(x+2\right)}{2\left(x+1\right)}\)
b, Thay x =-1/2 vào ta đc
\(-\dfrac{\left(\dfrac{-1}{2}+2\right)}{2\left(-\dfrac{1}{2}+1\right)}=\dfrac{-\dfrac{3}{2}}{2\left(\dfrac{1}{2}\right)}=\dfrac{-3}{2}\)
a: \(M=1:\left(\dfrac{1}{\sqrt{x}+2}-\dfrac{3x}{2\left(x-4\right)}+\dfrac{1}{2\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{4-2\sqrt{x}}{1}\)
\(=1:\left(\dfrac{2\sqrt{x}-4-3x+\sqrt{x}+2}{2\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\cdot\dfrac{-2\left(\sqrt{x}-2\right)}{1}\)
\(=\dfrac{2\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\cdot\left(-2\right)\cdot\left(\sqrt{x}-2\right)}{-3x+3\sqrt{x}-2}\)
\(=\dfrac{-4\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+2\right)}{-3x+3\sqrt{x}-2}\)
b: M=20
=>\(-4\left(x-4\right)\left(\sqrt{x}-2\right)=-60x+60\sqrt{x}-40\)
=>\(x\sqrt{x}-2x-4\sqrt{x}+8=-15x+15\sqrt{x}-10\)
=>\(x\sqrt{x}+13x-19\sqrt{x}+18=0\)
=>\(x\in\varnothing\)
1.\(x=49\Rightarrow B=\dfrac{49-\sqrt{49}}{2\sqrt{49}+1}=\dfrac{14}{5}\)
2.\(M=A.B=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right).\dfrac{x-\sqrt{x}}{2\sqrt{x}+1}\)
\(\Rightarrow M=A.B=\left(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)
\(\Rightarrow M=A.B=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)
\(\Rightarrow M=A.B=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
3,\(M=\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}+1}=\dfrac{1}{3}\\ \Rightarrow3\sqrt{x}=\sqrt{x}+1\\ \Rightarrow2\sqrt{x}=1\\ \Rightarrow\sqrt{x}=\dfrac{1}{2}\\ \Rightarrow x=\dfrac{1}{4}\)
\(M=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\left(x\ge0,x\ne1\right)\)
\(=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)\(=\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}\)
2) Thay x=9 vào M đã rút gọn ta được:
\(M=\dfrac{\sqrt{9}-1}{9+\sqrt{9}+1}=\dfrac{2}{13}\)
3) Có \(M=\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}\)
\(\Leftrightarrow x.M+\sqrt{x}\left(M-1\right)+1+M=0\) (*)
Tại x=0 pt (*) <=> M=-1 (1)
Tại x khác 0, coi pt (*) là pt bậc 2 ẩn \(\sqrt{x}\)
Pt (*) có nghiệm không âm <=> \(\left\{{}\begin{matrix}\Delta\ge0\\S\ge0\\P\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3M^2-6M+1\ge0\\\dfrac{1-M}{M}\ge0\\\dfrac{1+M}{M}\ge0\end{matrix}\right.\)
\(\Rightarrow0< M\le\dfrac{-3+2\sqrt{3}}{3}\) (2)
Từ (1) (2)=> \(M_{min}=-1\) <=> x=0
a)B = \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{7x+3}{9-x^2}\left(ĐK:x\ne\pm3\right)\)
= \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{7x+3}{x^2-9}\)
= \(\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-7x-3}{\left(x+3\right)\left(x-3\right)}\)
= \(\dfrac{3x^2-9x}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x}{x+3}\)
b) \(\left|2x+1\right|=7< =>\left[{}\begin{matrix}2x+1=7< =>x=3\left(L\right)\\2x+1=-7< =>x=-4\left(C\right)\end{matrix}\right.\)
Thay x = -4 vào B, ta có:
B = \(\dfrac{-4.3}{-4+3}=12\)
c) Để B = \(\dfrac{-3}{5}\)
<=> \(\dfrac{3x}{x+3}=\dfrac{-3}{5}< =>\dfrac{3x}{x+3}+\dfrac{3}{5}=0\)
<=> \(\dfrac{15x+3x+9}{5\left(x+3\right)}=0< =>x=\dfrac{-1}{2}\left(TM\right)\)
d) Để B nguyên <=> \(\dfrac{3x}{x+3}\) nguyên
<=> \(3-\dfrac{9}{x+3}\) nguyên <=> \(9⋮x+3\)
x+3 | -9 | -3 | -1 | 1 | 3 | 9 |
x | -12(C) | -6(C) | -4(C) | -2(C) | 0(C) | 6(C) |
a: ĐKXĐ: \(x\notin\left\{0;1;2;3;4;5\right\}\)
b: \(P=\dfrac{1}{x^2-x}+\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}\)
\(=\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\dfrac{-1}{x}+\dfrac{1}{x-1}-\dfrac{1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}-\dfrac{1}{x-4}+\dfrac{1}{x-5}\)
\(=\dfrac{1}{x-5}-\dfrac{1}{x}\)
\(=\dfrac{x-\left(x-5\right)}{x\left(x-5\right)}=\dfrac{5}{x\left(x-5\right)}\)
c: \(x^3-x^2+2=0\)
=>\(x^3+x^2-2x^2+2=0\)
=>\(x^2\cdot\left(x+1\right)-2\left(x-1\right)\left(x+1\right)=0\)
=>\(\left(x+1\right)\left(x^2-2x+2\right)=0\)
=>x+1=0
=>x=-1
Khi x=-1 thì \(P=\dfrac{5}{\left(-1\right)\left(-1-5\right)}=\dfrac{5}{\left(-1\right)\cdot\left(-6\right)}=\dfrac{5}{6}\)
a: \(M=\dfrac{2x+2+4x-4+7x+15}{\left(x-1\right)\left(x+1\right)}=\dfrac{13x+13}{\left(x-1\right)\left(x+1\right)}=\dfrac{13}{x-1}\)