K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2021

a) △ABM và △ECM có:

\(MB=MC\\ \widehat{AMB}=\widehat{CME}\\ AM=ME\)

\(\Rightarrow\text{△ABM = △ECM (c.g.c)}\)

b) \(\text{△ABM = △ECM}\\ \Rightarrow\widehat{ABM}=\widehat{ECM}\)

Mà 2 góc ở vị trí so le trong

\(\Rightarrow\) AB // CE (dấu hiệu nhận biết)

c) \(\text{△ACM và △EBM có:}\\ AM=EM\\ \widehat{AMC}=\widehat{BME}\\ CM=BM\\ \Rightarrow\text{△ACM = △EBM (c.g.c)}\\ \Rightarrow\widehat{CAM}=\widehat{BEM}\\ \text{△AIM và △EKM có:}\\ AI=EK\\ \widehat{IAM}=\widehat{KEM}\\ AM=EM\\ \Rightarrow\text{△AIM = △EKM (c.g.c)}\\ \Rightarrow MI=MK\)

a) Xét ΔABM và ΔECM có 

MA=ME(gt)

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔABM=ΔECM(c-g-c)

a: Xét ΔABM và ΔECM có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó: ΔABM=ΔECM

b: Xét tứ giác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

Do đó:ABEC là hình bình hành

Suy ra: AB//CE

c: Xét tứ giác AIEK có 

AI//EK

AI=EK

Do đó: AIEK là hình bình hành

Suy ra: Hai đường chéo AE và IK cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của AE

nên M là trung điểm của IK

hay MI=MK

26 tháng 12 2023

a: Xét ΔMAB và ΔMEC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMEC

b: Ta có: ΔMAB=ΔMEC

=>AB=EC

Ta có: ΔMAB=ΔMEC

=>\(\widehat{MAB}=\widehat{MEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CE

c: Xét ΔMAC và ΔMEB có

MA=ME

\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMEB

=>\(\widehat{MAC}=\widehat{MEB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BE

d: Xét ΔIAM và ΔKEM có

IA=KE

\(\widehat{IAM}=\widehat{KEM}\)

AM=EM

Do đó: ΔIAM=ΔKEM

=>\(\widehat{IMA}=\widehat{KME}\)

mà \(\widehat{IMA}+\widehat{IME}=180^0\)(hai góc kề bù)

nên \(\widehat{KME}+\widehat{IME}=180^0\)

=>I,M,K thẳng hàng

29 tháng 12 2023

a: Xét ΔAMB và ΔEMC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔAMB=ΔEMC

b: Ta có: ΔAMB=ΔEMC

=>AB=CE
Ta có: ΔAMB=ΔEMC

=>\(\widehat{MAB}=\widehat{MEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//EC

c: Xét ΔHAM và ΔKEM có

HA=KE

\(\widehat{HAM}=\widehat{KEM}\)

AM=EM

Do đó: ΔHAM=ΔKEM

=>\(\widehat{AMH}=\widehat{EMK}\)

mà \(\widehat{AMH}+\widehat{HME}=180^0\)(hai góc kề bù)

nên \(\widehat{EMK}+\widehat{HME}=180^0\)

=>H,M,E thẳng hàng

19 tháng 12 2021

Xét ABM và EMC có : AM = ME BM = CM Góc AMB = góc CME ( đối đỉnh ) => tam giac ABM = Tam giác EMC Ta có : Tam giác AMB = tam giác EMC nên góc BAM = góc EMC Mặt khác : 2 góc BAM và AEC nắm vị trí so le trong => AB // CE c Xét tam giác AIB và tam gics CIK có : AI = IC BI = Ik Góc AIB = góc CIK ( đối đỉnh ) => tam giác AIB = tam giác CIK

10 tháng 12 2021

b: Xét tứ giác ABEC có

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB//CE

13 tháng 12 2021

b: Xét tứ giác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

DO đó: ABEC là hình bình hành

Suy ra: AB//EC

b: Xét tứ giác ABEC có 

M là trung điểm của AE

M là trung điểm của BC

Do đó: ABEC là hình bình hành

Suy ra: AB//EC

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

12 tháng 11 2021

a: Xét tứ giác ACEB có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ACEB là hình bình hành

Suy ra: AC//BE