K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

\(=x^2-xy-xy+y+2x-x^2-xy+1\)

=-3xy+2x+y+1

1 tháng 11 2021

\(A=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4\left(y^2-1\right)\)

   \(=\left(x-y-x-y\right)^2-4\left(y^2-1\right)\)

   \(=\left(-2y\right)^2-4y^2+4=4\)

26 tháng 8 2020

a) \(27\left(1-x\right)\left(x^2+x+1\right)+81x\left(x-1\right)\)

\(=27\left(1-x^3\right)+81\left(x^2-x\right)\)

\(=27-27x^3+81x^2-81x\)

b) \(y\left[x^2+x\left(x-y\right)+\left(x-y\right)^2\right]+\left(x-y\right)^3\)

\(=y\left[x^2+x^2-xy+x^2-2xy+y^2\right]+x^3-3x^2y+3xy^2-y^3\)

\(=y\left(3x^2-3xy+y^2\right)+x^3-3x^2y+3xy^2-y^3\)

\(=3x^2y-3xy^2+y^3+x^3-3x^2y+3xy^2-y^3=x^3\)

26 tháng 8 2020

a, \(27\left(1-x\right)\left(x^2+x+1\right)+81x\left(x-1\right)=27-27x^3+81x^2-81x\)

b, \(y\left[x^2+x\left(x-y\right)+\left(x-y\right)^2\right]+\left(x-y\right)^3\)

\(=3x^2y-3xy^2+y^3+x^3-3x^2y+3xy^2-y^3=x^3\)

Ta có: \(A=\left(x-y-1\right)^3-\left(x-y+1\right)^3+6\left(x-y\right)^2\)

\(=\left(x-y-1-x+y-1\right)\left[\left(x-y-1\right)^2+\left(x-y-1\right)\left(x-y+1\right)+\left(x-y+1\right)^2\right]+6\left(x-y\right)^2\)

\(=-2\cdot\left[3\left(x-y\right)^2+1\right]+6\left(x-y\right)^2\)

\(=-6\left(x-y\right)^2+6\left(x-y\right)^2-2\)

=-2

2 tháng 10 2018

Bài 1:

a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)

b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)

25 tháng 9 2023

\(A=x^2\left(x-y^2\right)-xy\left(1-xy\right)-x^3\\ =x^3-x^2y^2-xy+x^2y^2-x^3\\ =\left(x^3-x^3\right)+\left(-x^2y^2+x^2y^2\right)-xy\\ =-xy\)

25 tháng 9 2023

\(A=x^2\left(x-y^2\right)-xy\left(1-xy\right)-x^3\)

\(=x^3-x^2y^2-xy+x^2y^2-x^3\)

\(=\left(x^3-x^3\right)+\left(-x^2y^2+x^2y^2\right)-xy\)

\(=-xy\)

Vậy \(A=-xy\)

#\(Toru\)