rút gọn biểu thức a=(x=y)(x-1)+x(2-x-y)+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho biểu thức A = (x+y) (x-1)+x(2-x-y)+1
a, rút gọn biểu thức
b, tính giá trị biểu thức khi x=1 y=1/2
\(A=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4\left(y^2-1\right)\)
\(=\left(x-y-x-y\right)^2-4\left(y^2-1\right)\)
\(=\left(-2y\right)^2-4y^2+4=4\)
a) \(27\left(1-x\right)\left(x^2+x+1\right)+81x\left(x-1\right)\)
\(=27\left(1-x^3\right)+81\left(x^2-x\right)\)
\(=27-27x^3+81x^2-81x\)
b) \(y\left[x^2+x\left(x-y\right)+\left(x-y\right)^2\right]+\left(x-y\right)^3\)
\(=y\left[x^2+x^2-xy+x^2-2xy+y^2\right]+x^3-3x^2y+3xy^2-y^3\)
\(=y\left(3x^2-3xy+y^2\right)+x^3-3x^2y+3xy^2-y^3\)
\(=3x^2y-3xy^2+y^3+x^3-3x^2y+3xy^2-y^3=x^3\)
Ta có: \(A=\left(x-y-1\right)^3-\left(x-y+1\right)^3+6\left(x-y\right)^2\)
\(=\left(x-y-1-x+y-1\right)\left[\left(x-y-1\right)^2+\left(x-y-1\right)\left(x-y+1\right)+\left(x-y+1\right)^2\right]+6\left(x-y\right)^2\)
\(=-2\cdot\left[3\left(x-y\right)^2+1\right]+6\left(x-y\right)^2\)
\(=-6\left(x-y\right)^2+6\left(x-y\right)^2-2\)
=-2
Bài 1:
a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)
b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)
\(A=x^2\left(x-y^2\right)-xy\left(1-xy\right)-x^3\\ =x^3-x^2y^2-xy+x^2y^2-x^3\\ =\left(x^3-x^3\right)+\left(-x^2y^2+x^2y^2\right)-xy\\ =-xy\)
\(=x^2-xy-xy+y+2x-x^2-xy+1\)
=-3xy+2x+y+1