K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2015

Ta có:

x = \(\frac{a}{m}=\frac{a+a}{2m}\)

\(y=\frac{b}{m}=\frac{b+b}{2m}\)

Vì x<y, => a<b

Vì a< b => \(\frac{a+a}{2m}<\frac{a+b}{2m}<\frac{b+b}{2m}\)

Vậy x < z < y nếu z =\(\frac{a+b}{2m}\)

8 tháng 5 2016

a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)

<=> 3(2n+5) chia hết cho (3n+1)

<=>(6n+15) chia hết cho (3n+1)

<=> (6n + 2 +13) chia hết cho (3n+1)

<=> 13 chia hết cho (3n+1)

=> (3n+1) thuộc Ư(13)

Vì n thuộc N

=> (3n+1) = 1,13

=> n = 0 hoặc 4

b)Trong phần này ta sẽ áp dung 1 tính chất sau:

a/b < (a+m)/(b+m)      với a<b

Ta thấy :

x/(x+y)  >  x/(x+y+z)

y/(y+z) > y/(x+y+z)

z/(z+x) > z/(x+y+z)

=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)

=> A>1

Ta thấy :

x/x+y < (x+z)/(x+y+z)

y/y+z < (y+x)/(x+y+z)

z/z+x < (z+y)/(x+y+z)

=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)

=>A< 2(x+y+z)/(x+y+z)

=> A<2

=>1<A<2

=> A ko phải là số nguyên(đpcm)

16 tháng 6 2015

ta có : x < y hay a/m < b/m   => a < b.

So sánh x, y, z ta chuyển chúng cùng mẫu : 2m

x =  a/m  = 2a/ 2m và y = b/m = 2b/2m  và z = (a + b) / 2m

mà : a < b

suy ra : a + a < b + a

hay 2a < a + b

suy ra x < z (1)

mà : a < b

suy ra : a + b < b + b

hay a + b < 2b

suy ra z < y (2)

23 tháng 8 2016

Điều cần cm là vô ngĩa 

VD

\(A\in Y=\left\{A;M:N:\right\}\)

\(B\in C=\left\{1;2;3;B\right\}\)

\(A\notin C\)

 

23 tháng 8 2016

cảm ơn bạn

 

25 tháng 8 2023

a) - Để chứng minh rằng 2 ∈ A, ta cần tìm một số nguyên k sao cho 3k + 2 = 2. Thấy ngay k = 0 là thỏa mãn, vì 3*0 + 2 = 2. Vậy 2 ∈ A.- Để chứng minh rằng 7 ∉ B, ta cần chứng minh rằng không tồn tại số nguyên m để 6m + 2 = 7. Giả sử tồn tại m, ta có 6m = 5, nhưng đây là một phương trình vô lý vì 6 không chia hết cho 5. Vậy 7 ∉ B.- Để kiểm tra xem số 18 có thuộc tập hợp A hay không, ta cần tìm một số nguyên k sao cho 3k + 2 = 18. Giải phương trình này, ta có 3k = 16, vì 3 không chia hết cho 16 nên không tồn tại số nguyên k thỏa mãn. Vậy số 18 không thuộc

17 tháng 5 2019

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)

\(A=\frac{x+y-y}{x+y}+\frac{y+z-z}{y+z}+\frac{z+x-x}{z+x}\)

\(A=3-\left(\frac{x}{x+z}+\frac{y}{x+y}+\frac{z}{y+z}\right)\)

mà \(\frac{x}{x+z}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)

\(\Rightarrow A< 2\left(1\right)\)

Mặt khác A =  \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)

mà \(\frac{x}{x+z}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)

\(\Rightarrow A>1\left(2\right)\)

Từ (1) và (2) => 1 < A < 2  => A không phải là số nguyên.

~ Học tốt ~ K cho mk nhé! Thank you.