Mn giúp e với ạ huhu, sắp đến hạn r ạ :<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left(6x+1-6x+1\right)^2=4\\ b,=3x^2-6x-5x+5x^2-8x^2-24=-11x-24\\ c,=14x^2+x-3-5x^2-18x+8-9x^2+17x=5\\ d,=6x^2+43x-40-6x^2-7x+3-36x+27=-10\)
a) \(=\left(6x+1\right)^2-2\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2=\left(6x+1-6x+1\right)^2=2^2=4\)
b) \(=3x^2-6x-5x+5x^2-8x^2+24=-11x+24\)
c) \(\left(7x-3\right)\left(2x+1\right)-\left(5x-2\right)\left(x+4\right)-9x^2+17x=\left(7x-3\right).2x+\left(7x-3\right)-\left[\left(5x-2\right).x+4\left(5x-2\right)\right]-9x^2+17x=14x^2-6x+7x-3-\left(5x^2-2x+20x-8\right)-9x^2+17x=5x^2+18x-3-\left(5x^2+18x-8\right)=5x^2+18x-3-5x^2-18x+8=5\)
d) \(\left(6x-5\right)\left(x+8\right)-\left(3x-1\right)\left(2x+3\right)-9\left(4x-3\right)=\left(6x-5\right).x+8\left(6x-5\right)-\left[\left(3x-1\right).2x+3\left(3x-1\right)\right]-36x+27=6x^2-5x+48x-40-\left(6x^2-2x+9x-3\right)-36x+27=6x^2+7x-13-\left(6x^2+7x-3\right)=6x^2+7x-13-6x^2-7x+3=-10\)
a. (3x - 1)2 - 16
= (3x - 1)2 - 42
= (3x - 1 - 4)(3x - 1 + 4)
= (3x - 5)(3x + 3)
= 3(3x - 5)(x + 1)
b. (5x - 4)2 - 49x2
= (5x - 4)2 - (7x)2
= (5x - 4 - 7x)(5x - 4 + 7x)
= \(\left(-2x-4\right)\left(2x-4\right)\)
= 2(-x - 2) . 2(x - 2)
= 4(-x - 2)(x - 2)
c. (2x + 5)2 - (x - 9)2
= (2x + 5 - x + 9)(2x + 5 + x - 9)
= (x + 14)(3x - 4)
2.
a)(3x-1)2-16 = (3x-1)2-42
=(3x-1-4).(3x-1+4)= (3x-5).(3x+3)
b)(5x-4)2-49x2 =(5x-4)2-(7x)2
= (5x-4-7x).(5x-4+7x) = (-2x-4).(12x-4)
c)(2x+5)2-(x-9)2 =(2x+5-x+9).(2x+5+x-9) =(x+14).(3x-4)
d)(3x+1)2-4.(x-2)2 =(3x+1)2-[2.(x-2)]2 = [3x+1-2.(x-2)].[3x+1+2.(x-2)]
= (3x+1-2x+4).(3x+1+2x-4)
= (x+5).(5x-3)
e)9.(2x+3)2-4.(x+1)2 =[3.(2x+3)]2-[2.(x+1)]2
=[3.(2x+3)-2.(x+1)].[3.(2x+3)+2.(x+1)]
=(6x+9-2x-2).(6x+9+2x+2)
=(4x+7).(8x+11)
a: \(4x^2-12x+9=\left(2x-3\right)^2\)
b: \(4x^2+4x+1=\left(2x+1\right)^2\)
c: \(36x^2+12x+1=\left(6x+1\right)^2\)
d: \(9x^2-24xy+16y^2=\left(3x-4y\right)^2\)
a: Ta có: \(\left(4x-6\right)^2-16\left(x-3\right)^2\)
\(=16x^2-48x+36-16x^2+96x-144\)
\(=48x-108\)
\(=48\cdot\left(-7\right)-108\)
\(=-444\)
b: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x^3-1+x^3+27\)
\(=2x^3+26\)
\(=-2+26=24\)
Câu 2
\((1) MnO_2 + 4HCl \to MnCl_2 + Cl_2 + 2H_2O\\ (2) Cl_2 + H_2 \xrightarrow{as} 2HCl\\ (3) 3Cl_2 + 2Fe \xrightarrow{t^o} 2FeCl_3\\ (4) 2FeCl_3 + Fe \to 3FeCl_2\\ (5) 2NaOH + Cl_2 \to NaCl + NaClO + H_2O\)
\((1) 4Al + 3O_2 \xrightarrow{t^o} 2Al_2O_3\\ (2) 2Fe + 3Cl_2 \xrightarrow{t^o} 2FeCl_3\\ (3) C + O_2 \xrightarrow{t^o} CO_2\\ (4) 2KMnO_4 \xrightarrow{t^o} K_2MnO_4 + MnO_2 + O_2\\ (5) 4P + 5O_2 \xrightarrow{t^o} 2P_2O_5\\ (6) 2KClO_3 \xrightarrow{t^o} 2KCl + 3O_2\\ (7) Fe + H_2SO_4 \to FeSO_4 + H_2\\ (8) Cu + 2H_2SO_4 \to CuSO_4 + SO_2 + 2H_2O\\ (9) 2Fe + 6H_2SO_4 \to Fe_2(SO_4)_3 + 3SO_2 + 6H_2O\\ (10) 2Al + 6H_2SO_4 \to Al_2(SO_4)_3 + 3SO_2 + 6H_2O\)
Bài 1:
a) \(\dfrac{4}{5}-\dfrac{7}{6}+\dfrac{-6}{15}=\dfrac{24}{30}-\dfrac{35}{30}+\dfrac{-12}{30}=\dfrac{24-35+-12}{30}=\dfrac{-23}{30}\)
b) \(\dfrac{-5}{9}.\dfrac{7}{13}+\dfrac{6}{13}.\dfrac{-5}{9}+3\dfrac{7}{9}\)
\(=\dfrac{-5}{9}.\left(\dfrac{7}{13}+\dfrac{6}{13}\right)+\dfrac{34}{9}\)
\(=\dfrac{-5}{9}.1+\dfrac{34}{9}\)
\(=\dfrac{-5}{9}+\dfrac{34}{9}\)
\(=\dfrac{29}{9}\)
c) \(6\dfrac{3}{8}-\left(4\dfrac{3}{8}-\dfrac{1}{2}\right)=\dfrac{51}{8}-\dfrac{35}{8}+\dfrac{1}{2}=\left(\dfrac{51}{8}-\dfrac{35}{8}\right)+\dfrac{1}{2}=2+\dfrac{1}{2}=\dfrac{5}{2}\)
d) \(2\dfrac{1}{3}.1,5-\left(\dfrac{11}{10}+50\%\right):\dfrac{4}{15}\)
\(=\dfrac{7}{3}.1,5-\dfrac{8}{5}:\dfrac{4}{15}\)
\(=\dfrac{7}{2}-6\)
\(=\dfrac{-5}{2}=-2,5\)
ĐKXĐ: \(x\notin\left\{0;-9\right\}\)
Ta có: \(\dfrac{1}{x+9}-\dfrac{1}{x}=\dfrac{1}{5}+\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{20x}{20x\left(x+9\right)}-\dfrac{20\left(x+9\right)}{20x\left(x+9\right)}=\dfrac{4x\left(x+9\right)+5x\left(x+9\right)}{20x\left(x+9\right)}\)
Suy ra: \(4x^2+36x+5x^2+45x=20x-20x-180\)
\(\Leftrightarrow9x^2+81x+180=0\)
\(\Leftrightarrow x^2+9x+20=0\)
\(\Leftrightarrow x^2+4x+5x+20=0\)
\(\Leftrightarrow x\left(x+4\right)+5\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(nhận\right)\\x=-5\left(nhận\right)\end{matrix}\right.\)
Vậy: S={-4;-5}
\(a.\overline{M}_X=\dfrac{44.1+32.2}{1+2}=36\left(\dfrac{g}{mol}\right)\\ b.d_{\dfrac{X}{H_2}}=\dfrac{36}{2}=18\)
Hướng làm:
Thấy cả tử mẫu cộng lại đều bằng 2021 → Cộng thêm 1 rồi quy đồng với mỗi phân thức
\(\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\\ \Leftrightarrow\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\\ \Leftrightarrow\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}\right)=0\\ \Leftrightarrow x+2021=0\Leftrightarrow x=-2021\)
\(< =>\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\)
\(< =>\dfrac{x+2+2019}{2019}+\dfrac{x+3+2018}{2018}=\dfrac{x+4+2017}{2017}+\dfrac{x+2021}{2021}\)
\(< =>\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\)
\(< =>\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}=\right)=0\)
\(< =>x+2021=0< =>x=-2021\)
Vậy....
\(n_X=\frac{5,6}{22,4}=0,25mol\)
Đặt \(\hept{\begin{cases}n_{H_2S}=a\\n_{CH_4}=b\end{cases}}\)
\(\Rightarrow a+b=n_C=0,25mol\)
\(m_X=m_{H_2S}+m_{CH_4}=34a+16b=5,8\)
\(\Rightarrow\hept{\begin{cases}a=0,1mol\\b=0,15mol\end{cases}}\)
Bảo toàn nguyên tố H: \(n_H=2n_{H_2S}=0,2mol;n_H=4n_{CH_4}=0,6mol\)
\(\Rightarrow\text{Σ}n_H=0,2+0,6=0,8mol\)
\(\Rightarrow m_H=0,8.1=0,8g\)