K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

Mỗi trận bóng đá gồm 2 đội lấy từ 12 đội Vậy số trận diễn ra từ 12 đội coi như là số tổ hợp chập 2 của 12 phần tử , vậy có C212C122=66 trận.
- vì có lượt đi và lượt về nên số trận đấu là 66.2=132 trận.

9 tháng 3 2016

255 chắt chắn 100000000000000000000000000000%

2 tháng 3 2020

gọi số trận hòa là a ( a \(\in\)N* )

vì 1 trận hòa là của hai đội,mỗi đội được 1 điểm nên tổng điểm của trận hòa là 2a

theo giả thiết, số trận thắng là 4a 

\(\Rightarrow\)tổng số điểm của các trận thắng là 12a

tổng số điểm các đội là 336 \(\Rightarrow\)2a + 12a = 336 \(\Rightarrow\)a = 24

vì vậy có tất cả : 24 + 4.24 = 120 trận đấu

theo giả thiết, có n đội mỗi đội đấu với n-1 đội còn lại nên số trận đấu là : \(\frac{n\left(n-1\right)}{2}\)

suy ra : \(\frac{n\left(n-1\right)}{2}=120\Rightarrow n=16\left(tm\right)\)

Vậy ...

15 tháng 5 2018

Tổng số trận là:
[5x(5−1)]:2=10(trận)[5.(5−1)]:2=10(trận)
Giả sử tất cả các trận đều có 1 đội thắng thì tổng điểm của 2 đội là 3 điểm:
3.10=30(điểm)3.10=30(điểm)
Dư ra:
30−21=9(điểm)30−21=9(điểm)
Sở dĩ có số điểm dư ra này vì ta đã thay số trận hòa bằng trận thắng:
Cứ thay 1 trận hòa bằng 1 trận thắng thì số điểm dư ra là:
3−1−1=1(điểm)3−1−1=1(điểm)
Số trận hòa là:
9:1=9(trận)9:1=9(trận)
Đội vô địch là đội chủ nhân của 1 trận thắng và 4 trận hòa(7 điểm)
Bài 2:
Năng suất chảy vào của vòi 1 là:
1:4=14(bể/giờ)1:4=1/4(bể/giờ)
Năng suất chảy vào của vòi 2 là:
1:6=16(bể/giờ)1:6=1/6(bể/giờ)
Năng suất chảy ra của vòi 3 là:
1:8=18(bể/giờ)1:8=1/8(bể/giờ)
Năng suất làm đầy bể khi cả 3 vòi đều mở là:
14+16−18=72414+16−18=7/24
Cả 3 vời cùng chảy thì đầy bể sau:
1:724=247(giờ)1:724=24/7(giờ)
Đáp số:247(giờ)Đáp số:24/7(giờ)

10 tháng 2 2023

Với 5 đội tuyển thì có số trận thi đấu là:

\(5\times4:2=10\) trận

Giả dụ các trận đều hòa thì tổng số điểm của hai đội mỗi trận bằng 2 nên tổng số điểm của các đội là:

\(2\times10=20\) điểm

Nhưng đề ra tổng số điểm của 5 đội là 21 điểm, mà mỗi trận không hòa thì tổng điểm của hai đội là 3 điểm, chênh lệch 1 điểm so với trận hòa. Vì vậy mà phải đổi một trận hòa với 1 trận không hòa

\(\Rightarrow\) 10 trận thì có 9 trận hòa, 1 trận không hòa. Đội giành vô địch là đội đã thắng trong trận không hòa

Từ đó, ta thấy đội vô địch thi đấu 4 trận thì chỉ thắng 1 trận, hòa 3 trận nên số điểm họ có là:

\(1\times3+3\times1=6\) điểm

Đáp số: 6 điểm.

Bài 1: Trong 1 lớp học dành cho những cháu học sinh yêu Toán mà Thầy Hiếu tổ chức, các bạn học sinh đều rất ngoan và lịch sự. Bạn đến sau đều lần lượt bắt tay với tất cả các bạn đến trước. (không có 2 bạn nào đến cùng lúc). Thầy Hiếu quan sát và thấy có tất cả 78 cái bắt tay. Hỏi lớp học của Thầy Hiếu có bao nhiêu người?Bài 2: Có n người tham gia một cuộc họp. Mỗi người...
Đọc tiếp

Bài 1: Trong 1 lớp học dành cho những cháu học sinh yêu Toán mà Thầy Hiếu tổ chức, các bạn học sinh đều rất ngoan và lịch sự. Bạn đến sau đều lần lượt bắt tay với tất cả các bạn đến trước. (không có 2 bạn nào đến cùng lúc). Thầy Hiếu quan sát và thấy có tất cả 78 cái bắt tay. Hỏi lớp học của Thầy Hiếu có bao nhiêu người?

Bài 2: Có n người tham gia một cuộc họp. Mỗi người đều bắt tay với những người còn lại. Hãy tính xem có bao nhiêu người tham dự cuộc họp đó biết rằng tổng số lần bắt tay là một số có 3 chữ số giống nhau.


 
Bài 3: Trong một cuộc họp có a người tham gia. Mỗi người đều bắt tay với tất cả những người còn lại trừ bạn A, A chỉ bắt tay với một số người trong những người còn lại. Người ta đếm thấy có tất cả 115 cái bắt tay. Hỏi có bao nhiêu người tham dự cuộc họp và A bắt tay với bao nhiêu người?

Bài 4: Có 8 đội bóng tham dự 1 giải bóng đá. Mỗi đội đều phải đấu với các đội còn lại 1 trận. Hỏi có tất cả bao nhiêu trận đấu?

Bài 5: Có 34 đội bóng đá thi đấu với nhau. Cách chia bảng bất kỳ, có thể có đặt cách cho những đội lẻ ra. Mỗi trận đấu, đội thắng được 2 điểm, hòa được 1 điểm và thua được 0 điểm. Hỏi tổng số điểm tất cả các trận đấu có thể bằng 173 điểm được hay không?

Bài 6: Có 8 đội bóng đá chia làm hai bảng, mỗi bảng 4 đội sẽ thi đấu vòng tròn chọn ra hai đội có thành tích tốt nhất để vào vòng bán kết. Hai đội thắng trong hai trận bán kết sẽ được vào thi đấu trận chung kết. Đội thắng được 3 điểm, hòa được 1 điểm, thua được 0 điểm. Điểm vẫn được tính cho các trận đấu bán kết, chung kết. Hỏi sau giải đấu, tổng điểm của tất cả các đội có thể là 46 điểm hay không?

Bài 7: Vòng chung kết bóng đá tiểu học 2014, có 5 đội tuyển của 5 trường tham gia thi đấu theo thể thức vòng tròn 1 lượt. Đội thắng được 2 điểm, thua 0 điểm và nếu trận đấu có kết quả hòa thì mỗi đội được 1 điểm. Sau khi thi đấu người ta thấy tổng điểm của 5 đội là 21.  Tính số điểm đội vô địch?

Bài 8: Một giải cờ vua có 8 người tham dự. Mỗi người thi đấu 1 ván với từng người còn lại. Mỗi trận thắng được 1 điểm, hòa được 0,5 điểm, thua không được điểm. Kết thúc giải, mỗi người có 1 điểm số khác nhau và điểm của người xếp thứ 2 bằng tổng điểm của 4 người xếp cuối cùng. Hỏi ván đấu của người thứ tư và thứ 5 có kết quả ra sao?

1
2 tháng 5 2020

1/39 người

2/ko biết

3/có 57 người,A bắt tay với 1 người

4/64 trận

5/ko

6/ko

7/ko biết

8/ko biết

26 tháng 11 2023

a) Ta tính tổng số các cặp lớp phân biệt có thể xảy ra.

 Vị trí đầu tiên có \(x\) cách chọn và vị trí thứ hai sẽ có \(x-1\) cách chọn (do một lớp bất kì không thể đấu với chính lớp đó). Nhưng nếu tính như trên, thì mỗi trận đấu giữa 2 đội bất kì sẽ bị lặp lại thêm 1 lần, nên tổng số trận đấu khác nhau là \(\dfrac{x\left(x-1\right)}{2}\)

 b) Cho \(\dfrac{x\left(x-1\right)}{2}=105\)

\(\Leftrightarrow x^2-x-210=0\)

\(\Leftrightarrow\left(x-21\right)\left(x+20\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=21\left(nhận\right)\\x=-20\left(loại\right)\end{matrix}\right.\)

Vậy có 21 đội tham gia.