Tìm các số nguyên dương x ; y biết .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
Quy tắc chia hết cơ bản: với các số nguyên dương ta luôn có \(a^n-b^n\) chia hết \(a-b\)
Do đó \(199^x-2^x⋮197\)
\(\Rightarrow p^y⋮197\Rightarrow p⋮197\) (do 197 là số nguyên tố)
\(\Rightarrow p=197\)
Pt trở thành: \(199^x-2^x=197^y\)
- Với \(x=1\Rightarrow y=1\)
- Với \(x=2\Rightarrow199^2-2^2=197.201\) chia hết 201, trong khi \(197^y\) ko chia hết cho 201 (ktm)
- Với \(x\ge3\) \(\Rightarrow2^x⋮8\)
TH1: Nếu x lẻ \(\Rightarrow\)\(199^x\equiv-1\left(mod8\right)\Rightarrow199^x-2^x\equiv-1\left(mod8\right)\)
+ \(y\) chẵn \(\Rightarrow197^y\equiv5^y\left(mod8\right)\equiv5^{2k}\left(mod8\right)\equiv25^k\left(mod8\right)\equiv1\left(mod8\right)\) (ktm)
+ \(y\) lẻ \(\Rightarrow197^y\equiv5^{2k+1}\left(mod8\right)\equiv5.25^k\left(mod8\right)\equiv5\) (mod8) (ktm)
TH2:\(x\) chẵn \(\Rightarrow199^x\equiv1\left(mod8\right)\Rightarrow199^x-2^x\equiv1\left(mod8\right)\)
+ \(y\) lẻ \(\Rightarrow\) tương tự TH1 ta có \(197^y\equiv5\left(mod8\right)\) (ktm)
\(\Rightarrow y\) chẵn
Khi x;y cùng chẵn, ta có \(199^x\equiv1\left(mod3\right)\) và \(2^x\equiv1\left(mod3\right)\)
\(\Rightarrow199^x-2^x⋮3\Rightarrow197^y⋮3\) (vô lý)
Vậy với \(x\ge3\) ko tồn tại bộ số nguyên dương nào thỏa mãn
Hay có đúng 1 bộ số thỏa mãn yêu cầu: \(\left(x;y;p\right)=\left(1;1;197\right)\)