K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 12 2021

Lời giải:
a. Vì $x,y$ tỉ lệ thuận nên đặt $y=kx$. Ta có:

$y_1=kx_1$ hay $\frac{1}{2}=k.2\Rightarrow k=\frac{1}{4}$. Vậy $y=\frac{1}{4}x$

$y_2=kx_2=\frac{1}{4}x_2=\frac{1}{4}.3=\frac{3}{4}$

b.

Vì $x,y$ tỉ lệ nghịch nên đặt $xy=k$.

$x_1y_1=k=x_2y_2$

$\Leftrightarrow \frac{1}{2}.4=x_2.(-4)$

$\Leftrightarrow x_2=\frac{-1}{2}$

27 tháng 12 2021
Tìm 5 giá trị của x biết 5,8>x>5,7

a: Sửa đề: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{2}{-z}=\dfrac{-t}{-9}\)

=>\(\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{-2}{z}=\dfrac{t}{9}=-2\)

=>\(x=-2\cdot5=-10;y=-2\cdot\left(-3\right)=6;z=\dfrac{-2}{-2}=1;t=9\cdot\left(-2\right)=-18\)

b: \(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}\)

=>\(\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}=4\)

=>\(\left\{{}\begin{matrix}x=4\cdot3=12\\y^2=\dfrac{4}{4}=1\\z^3=-2\cdot4=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\\y\in\left\{1;-1\right\}\\z=-2\end{matrix}\right.\)

25 tháng 9 2023

Th1: 2x+3 ≥ 0
Khi đó: |2x+3| =x+2
 (2x+3)= x+2
- 2x+3= x+2
-2x-x= 2-3
 x= -1
Th2: 2x+3 < 0
Khi đó: |2x+3|=x+2
 -(2x+3) = x +2
 -2x-3 = x+2
 -3x = 5
 x=-5/3

Vậy x= -1

      x= -5/3

Lớp 6 cugx học dạng v nè

25 tháng 9 2023

Câu b nha 

23 tháng 9 2021

a,\(\Leftrightarrow xy-4x-4y+16=17\\ \Leftrightarrow\left(x-4\right)\left(y-4\right)=17\)

mà x,y nguyên nên x-4,y-4 là ước của 17

...

23 tháng 9 2021

\(a,xy=4\left(x+y\right)+1\\ \Leftrightarrow4x-xy+4y+1=0\\ \Leftrightarrow4x\left(1-y\right)-4\left(1-y\right)=-5\\ \Leftrightarrow\left(x-1\right)\left(1-y\right)=-\dfrac{5}{4}\\ \Leftrightarrow x;y\in\varnothing\left(x,y\in Z\right)\)

18 tháng 4 2022

Có: x2+y2+z2≥1/3 (x+y+z)2  =4/3

=> x2+y2+z-3 >= 4/3 - 3 = -5/3

Dấu "=" xảy ra khi x=y=z=2/3

b: =>3x+9=0 và y^2-9=0 và x+y=0

=>x=-3; y=3

a: (2x-5)(y+3)=-22

mà x,y là số nguyên

nên \(\left(2x-5;y+3\right)\in\left\{\left(1;-22\right);\left(11;-2\right);\left(-1;22\right);\left(-11;2\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(3;-25\right);\left(8;-5\right);\left(2;19\right);\left(-3;-1\right)\right\}\)