K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 a: Xét ΔAMB và ΔDMC có

MA=MD

góc AMB=góc DMC

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

Do đó: ABDC là hình bình hành

=>BD//AC

c: Xét tứ giác ACBE có

N là trung điểm chung của AB và CE

Do đó: ACBE là hình bình hành

=>BE//AC và BE=AC

ACDB là hình bình hành

=>AC//BD và AC=BD

AC//BD

AC//BE

BD cắt BE tại B

Do đó: D,B,E thẳng hàng

mà BD=BE(=AC)

nên B là trung điểm của DE

27 tháng 12 2021

a) Xét ∆AMC và ∆NMB có:

+ AM = NM (gt).

+ Góc AMC = Góc NMB (đối đỉnh).

+ CM = BM (M là trung điểm của BC).

=> ∆AMC = ∆NMB (c - g - c).

b) ∆AMC = ∆NMB (cmt).

=> Góc CAM = Góc BNM (cặp góc tương ứng). 

Mà 2 góc này ở vị trí so le trong.

=> AC // BN (dhnb).

c) ∆AMC = ∆NMB (cmt).

=> AC = NB (cặp cạnh tương ứng). 

Xét tứ giác ACNB có:

+ AC = BN (cmt).

+ AC // BN (cmt).

=> Tứ giác ACNB là hình bình hành (dhnb).

=> AB // NC (tính chất hình bình hành).

24 tháng 2 2020

A B C H E D M S N K I

Câu a và câu b tham khảo tại link: Câu hỏi của Aftery - Toán lớp 7 - Học toán với OnlineMath

c) Xét \(\Delta\)ABE có AH vuông góc với AE và; HA = HE  

=> AH là đường cao đồng thời là đường trung tuyến của \(\Delta\)ABE 

=> \(\Delta\)ABE cân tại B 

=> AB = BE 

d) Ta có: SN vuông AH ; BC vuông AH 

=> SN //BC 

=> NK //MC 

=> ^KNI = ^MCI 

mặt khác có: NK = MC ; IN = IC ( gt)

=> \(\Delta\)NIK = \(\Delta\)CIM

=> ^NIK = ^CIM mà ^NIK + ^KIC = 180o

=> ^CIM + ^KIC = 180o

=> ^KIM = 180o

=>M; I ; K thẳng hàng

Bài 1: 

a: Xét tứ giác ABEC có

M là trung điểm của BC

M là trung điểm của AE

Do đó:ABEC là hình bình hành

Suy ra: AB=CE

b: ta có: ABEC là hình bình hành

nên AB//CE

a: Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

=>ABEC là hình bình hành

=>AB=EC

b: ABEC là hbh

=>AB//EC

c: Xét ΔIAB và ΔICD có

góc IAB=góc ICD

IA=IC

góc AIB=góc CID

=>ΔIAB=ΔICD

=>IB=ID

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

10 tháng 1 2022

Cậu tự hình nhé

a.ΔAMCΔAMC và ΔNMBΔNMB có:

AM= NM (gt)

ˆAMCAMC^ =ˆNMBNMB^ (2 góc đối đỉnh)

CM= MB (gt)

⇒ΔAMC=ΔNMB(c.g.c)⇒ΔAMC=ΔNMB(c.g.c)

⇒AC=BN⇒AC=BN (đpcm)

10 tháng 1 2022

a.ΔAMC và ΔNMB có:

AM= NM (gt)

AMC =NMB (2 góc đối đỉnh)

CM= MB (gt)

⇒ΔAMC=ΔNMB(c.g.c)

⇒AC=BN (đpcm)

b.ΔAMB và ΔNMC có:

AM= NM (gt)

AMBNMC (2 góc đối đỉnh)

CM= BM (gt)

⇒ΔAMB=ΔNMC(c.g.c)

 

BAM=CNM^ (hai góc tương ứng)

Hai góc đồng vị ​​BAM​ vàCNM bằng nhau nên AB//NC (đpcm)