Cho T \(\text{}5^1+5^2+5^3+...+5^{2020}\) Tìm số tự nhiên N sao cho 4 x T + 5 = \(5^{^{ }n}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5T=5^2+5^3+5^4+5^5+...+5^{2021}\)
\(4T=5T-T=5^{2021}-5\)
\(\Rightarrow4T+5=5^{2021}=5^n\Rightarrow n=2021\)
1)2n+5-2n-1
=>4 chia hết cho 2n-1
ước của 4 là 1 2 4
2n-1=1=>n=.....
tiếp với 2 và 4 nhé
4,
Gọi ƯCLN của ( 5n+7, 7n+10) = d
Ta có:
5n+7 ⋮ d
7n+10 ⋮ d
=> 7.(5n+7) ⋮ d
5.(7n+10) ⋮ d
=> 35n + 49 ⋮ d
35n + 50 ⋮ d
=> 35n + 50 - (35n + 49) ⋮ d
=> 1 ⋮ d
=> d=1
Vậy phân số 5n+7/ 7n+10 là phân số tối giản (đpcm)
a) D = 9 + 9² + 9³ + ... + 9²⁰²⁰
9D = 9² + 9³ + 9⁴ + ... + 9²⁰²¹
8D = 9D - D
= (9² + 9³ + 9⁴ + ... + 9²⁰²¹) - (9 + 9² + 9³ + ... + 9²⁰²⁰)
= 9²⁰²¹ - 9
D = (9²⁰²¹ - 9) : 8
b) Điều kiện: n ∈ ℕ và n ≠ 1
Do 125 chia n dư 5 nên n là ước của 125 - 5 = 120
Do 85 chia n dư 1 nên n là ước của 85 - 1 = 84
⇒ n ∈ ƯC(120; 84)
Ta có:
120 = 2³.3.5
84 = 2².3.7
⇒ ƯCLN(120; 84) = 2².3 = 12
⇒ n ∈ ƯC(120; 84) = Ư(12) = {2; 3; 4; 6; 12}
Vậy n ∈ {2; 3; 4; 6; 12}