4 và 1/20...42 <>=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(B=\dfrac{3}{2}+\dfrac{13}{12}+\dfrac{31}{30}+...+\dfrac{9901}{9900}\)
\(=1+\dfrac{1}{2}+1+\dfrac{1}{12}+1+\dfrac{1}{30}+...+1+\dfrac{1}{9900}\)
\(=1+1+1+...+1\left(50cs\right)+\dfrac{1}{2}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)
\(=50+\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+...+\dfrac{1}{9900}\)
\(C=\dfrac{5}{6}+\dfrac{19}{20}+\dfrac{41}{42}+...+\dfrac{10099}{10100}\)
\(=\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{20}\right)+\left(1-\dfrac{1}{42}\right)+...+\left(1-\dfrac{1}{10100}\right)\)
\(=1+1+...+1\left(50cs\right)-\dfrac{1}{6}-\dfrac{1}{20}-\dfrac{1}{42}-...-\dfrac{1}{10100}\)
\(B-C=\left(50+\dfrac{1}{2}+\dfrac{1}{12}+...+\dfrac{1}{9900}\right)-\left(50-\dfrac{1}{6}-\dfrac{1}{20}-...-\dfrac{1}{10100}\right)\)
\(=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}+\dfrac{1}{10100}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{100.101}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)
Chúc Bạn Học Tốt và Đạt nhiều thành tích tốt !!!
a) X={30;45;60;75}
b) X ={13;26;39;52;65}
c) X={6;7;14;21;42}
c) X={1;5;7}
a,\(\frac{14}{3}\)> \(\frac{42}{11}\)
b, 0 < \(\frac{1}{2}\)+ \(\frac{1}{3}\)+ \(\frac{1}{6}\)
c, 0 < 1 < \(\frac{1}{4}\)+ \(\frac{5}{6}\)+ \(\frac{11}{12}\)
+ \(\sqrt{20+\sqrt{20}}< \sqrt{20+\sqrt{25}}\)
\(\Rightarrow\sqrt{20+\sqrt{20}}< \sqrt{25}\)
\(\Rightarrow\sqrt{20+\sqrt{20}}< 5\)
\(\Rightarrow\sqrt{20+\sqrt{20+\sqrt{20}}}< \sqrt{20+5}\)
\(\Rightarrow\sqrt{20+\sqrt{20+\sqrt{20}}}< 5\)
Tương tự như vậy ta có :
\(A=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}< \sqrt{20+5}\)
\(\Rightarrow A< 5\)