tim m,n thuoc z de 1/m+n/6=1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Để A là phân số thì n+1<>0
hay n<>-1
b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
ĐKXĐ bạn tự xét nhé
\(M=\left(1+\frac{a}{a^2+1}\right):\left(\frac{1}{a-1}-\frac{2a}{a^3-a^2+a-1}\right)\)
\(M=\left(\frac{a^2+1}{a^2+1}+\frac{a}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{a^2\left(a-1\right)+\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2-2a+1}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{\left(a-1\right)^2}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(M=\frac{\left(a^2+a+1\right)\left(a^2+1\right)\left(a-1\right)}{\left(a^2+1\right)\left(a-1\right)^2}\)
\(M=\frac{a^2+a+1}{a-1}\)
Để M thuộc Z thì \(a^2+a+1⋮a-1\)
\(\Leftrightarrow a^2-a+2a-2+3⋮a-1\)
\(\Leftrightarrow a\left(a-1\right)+2\left(a-1\right)+3⋮a-1\)
\(\Leftrightarrow\left(a-1\right)\left(a+2\right)+3⋮a-1\)
Mà \(\left(a-1\right)\left(a+2\right)⋮a-1\)
\(\Rightarrow3⋮a-1\)
\(\Rightarrow a-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
\(\Rightarrow a\in\left\{2;4;0;-2\right\}\)
Để M = 7 thì :
\(\frac{a^2+a+1}{a-1}=7\)
\(\Leftrightarrow a^2+a+1=7\left(a-1\right)\)
\(\Leftrightarrow a^2+a+1=7a-7\)
\(\Leftrightarrow a^2-6a+8=0\)
\(\Leftrightarrow a^2-2a-4a+8=0\)
\(\Leftrightarrow a\left(a-2\right)-4\left(a-2\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(a-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a-2=0\\a-4=0\end{cases}\Rightarrow\orbr{\begin{cases}a=2\\a=4\end{cases}}}\)
Để M > 0 thì :
\(\frac{a^2+a+1}{a-1}>0\)
Vì \(a^2+a+1>0\forall a\), do đó để M > 0 thì : \(a-1>0\Leftrightarrow a>1\)
Chứng minh \(a^2+a+1>0\):
Đặt \(B=a^2+a+1\)
\(B=a^2+2\cdot a\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(B=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(a+\frac{1}{2}\right)^2\ge0\forall a\)
\(\Rightarrow B\ge0+\frac{3}{4}=\frac{3}{4}>0\)
\(\Rightarrow B>0\left(đpcm\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a+\frac{1}{2}=0\Leftrightarrow a=\frac{-1}{2}\)
a: \(\Leftrightarrow n+1+4⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
b: \(\Leftrightarrow n+2-9⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{-1;-3;1;-5;7;-11\right\}\)
c: \(\Leftrightarrow2n-2+8⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3;9;-7\right\}\)
Ta có : \(A=\frac{2n-1}{n+3}=\frac{2n+6-7}{n+3}=\frac{2\left(n+3\right)}{n+3}-\frac{7}{n+3}=2-\frac{7}{n+3}\)
Để \(A\in Z\) thì 7 chia hết cho n + 3
Suy ra n + 3 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng ;
n + 3 | -7 | -1 | 1 | 7 |
n | -10 | -4 | -2 | 4 |
a)để A thuộc Z hay a là số nguyên
=>n-1 chia hết n-3
<=>(n-1)-2 chia hết n-3
=>2 chia hết n-3
=>n-3\(\in\){1,-1,2,-2}
=>n\(\in\){4,2,5,1}
b)vì mẫu số của ps luôn luôn\(\ne0\) =>n\(\ne\)3 và 0;n\(\in\)Z