Bài 1: (2đ). Thực hiện phép tính: a) 3x(x² + 2x - 1) b) (2x² +5x+2) : (x+2) 6 3 c) x² + 4x + 2x+8 Bài 2: (2đ). a) Tim x, biết: x(x – 2)+x−2 =0 a) x²-25-(x + 5) = 0 a) 2x²(3x² - 7x +2) b) (2x²-7x+3): (2x - 1) r 4-4x c) + x-2 x-2 x +1 -2x + c) 2x-2x² b) Tính giá trị của biểu thức: xẻ + 2x + l − y, tại x = 94,5 và y=4,5 b) Tính giá trị của biểu thức: (X + 1) − y”, tại x =94,5 và y=4,5 c) Tính giá trị biểu thức: Q = xẻ − 10x + 25 tại x = 1005 Bài 3: (2đ) Rút gọn phân thức a) A = x² +6x+9 b) 4x+10 2x²+5x B = c) C= x²-xy Sy²-5xy Bài 5: (2,5 đ) Cho AABC, đường trung tuyển AM. Gọi D là trung điểm của AB, E là điểm dối xứng với M qua D. a) Tử giác AEBM là hình gì? Vì sao? b) Biết AC = 12cm, tính độ dải đoạn MD?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a: \(=2x^3:\dfrac{-3}{2}x+4x:\dfrac{3}{2}x-5:\dfrac{3}{2}\)
=-4/3x^2+8/3-10/3
=-4/3x^2-2/3
d: \(\dfrac{3x^3-5x+2}{x-3}=\dfrac{3x^3-9x^2+9x^2-27x+22x-66+68}{x-3}\)
\(=3x^2+9x+22+\dfrac{68}{x-3}\)
`Answer:`
Bài 1:
a) \(7+2x=22-3x\)
\(\Leftrightarrow2x+3x=22-7\)
\(\Leftrightarrow5x=15\)
\(\Leftrightarrow x=3\)
b) \(8x-3=5x+12\)
\(\Leftrightarrow8x-5x=12+3\)
\(\Leftrightarrow3x=15\)
\(\Leftrightarrow x=5\)
c) \(x-12+4x=25+2x-1\)
\(\Leftrightarrow x-12+4x-25-2x+1=0\)
\(\Leftrightarrow\left(x+4x-2x\right)+\left(1-12-25\right)=0\)
\(\Leftrightarrow3x-36=0\)
\(\Leftrightarrow x=12\)
d) \(x+2x+3x-19=3x+5\)
\(\Leftrightarrow6x-19=3x+5\)
\(\Leftrightarrow6x-3x=5+19\)
\(\Leftrightarrow3x=24\)
\(\Leftrightarrow x=8\)
Bài 2:
a) \(\left(2,3x-6,9\right)\left(0,1x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2,3x-6,9=0\\0,1x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-20\end{cases}}}\)
b) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)
\(\Leftrightarrow2x+7=0\text{ hoặc }x-5=0\text{ hoặc }5x+1=0\)
\(\Leftrightarrow x=-\frac{7}{2}\text{ hoặc }x=5\text{ hoặc }x=-\frac{1}{5}\)
c) \(\left(4x+2\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x+2=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x^2=-1\text{(Loại)}\end{cases}}}\)
d) \(\left(x^2-4\right)+\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow x^2-4+\left(3x-2x^2-6+4x\right)=0\)
\(\Leftrightarrow x^2-4=\left(-2x^2+7x-6\right)=0\)
\(\Leftrightarrow x^2-4-2x^2+7x-6=0\)
\(\Leftrightarrow-x^2+7x-10=0\)
\(\Leftrightarrow x^2-5x-2x+10=0\)
\(\Leftrightarrow x.\left(x-5\right)-2.\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right).\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}}\)
* 4x - 1 = 3x - 2
⇔ 4x - 3x = -2 + 1
⇔ x = -1
Vậy tập nghiệm của pt là S = {-1}
* \(\frac{3}{4}-3x=0\)
⇔ \(\frac{3}{4}-\frac{3x.4}{4}=0\)
⇒ 3 - 12x = 0
⇔ 12x = 3
⇔ x = \(\frac{3}{12}=\frac{1}{4}\)
Vậy tập nghiệm của pt là S = \(\left\{\frac{1}{4}\right\}\)
* 3x - 2 = 2x + 3
⇔ 3x - 2x = 3 + 2
⇔ x = 5
Vậy tập nghiệm của pt là S = {5}
* 2(x - 3) = 5(x + 4)
⇔ 2x - 6 = 5x + 20
⇔ 2x - 5x = 20 + 6
⇔ -3x = 26
⇔ x = \(\frac{-26}{3}\)
Vậy tập nghiệm của pt là S = \(\left\{\frac{-26}{3}\right\}\)
\(A,5x-25=0\)
\(\Leftrightarrow5x-5^2=0\)
\(\Leftrightarrow5\left(x-1\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Rightarrow x=1\)
Chúc bạn học tốt !
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)