Câu 1 : Cho x tỉ lệ nghịch với y theo hệ số a ; y tỉ lệ nghịch với z theo hệ số b .
Hỏi x tỉ lệ thuận hay tỉ lệ nghịch với z ? tìm hệ số tỉ lệ ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x=2y
nên y=2/x
yz=-3
\(\Leftrightarrow z\cdot\dfrac{2}{x}=-3\)
\(\Leftrightarrow2z=-3x\)
a: xy=k
nên y=x/k
yz=1
nên \(\dfrac{x}{k}\cdot z=1\)
=>xz=k
Vậy: x tỉ lệ nghịch với z theo hệ số tỉ lệ k
b: xy=k
y=z
nên x/k=z
=>x=kz
Vậy: x tỉ lệ thuận với z theo hệ số tỉ lệ k
c: x=ky
nên y=x/k
yz=1
nên \(\dfrac{xz}{k}=1\)
=>xz=k
Vậy: x tỉ lệ nghịch với z theo hệ số tỉ lệ k
Vì y tỉ lệ nghịch với z theo tỉ lệ -4 nên y = − 4 x
Và x tỉ lệ nghịch với z theo tỉ lệ 3 4 nên x = 3 4 z
Thay x = 3 4 z vào y = − 4 x ta được y = − 4 3 4 z = − 16 3 z
Nên y và z tỉ lệ thuận với nhau theo hệ số tỉ lệ − 16 3
Đáp án cần chọn là C
3)
Vì y tỉ lệ nghịch với x theo hệ số tỉ lệ 0,8 nên xy=0,8 (1)
x tỉ lệ nghịch với z theo hệ số tỉ lệ 0,5 nên xz=0,5 (2)
Từ (1) và (2) suy ra xy/xz=0,8*0,5 hay y/z=0,4 suy ra y=0,4*z
Vậy y tỉ lệ thuận với z theo hệ số tỉ lệ là 0,4
Lời giải:
Theo bài ra ta có:
$xy=a$
$yz=b$
$\Rightarrow \frac{xy}{yz}=\frac{a}{b}$ hay $\frac{x}{z}=\frac{a}{b}$
$\Rightarrow x=\frac{a}{b}.z$
Vậy $x$ tỉ lệ thuận với $z$ theo hệ số tỉ lệ $\frac{a}{b}$
Lời giải:
Theo đề ra ta có:
$xz=a; zy=b; yx=a$
t là số nào trong này hả bạn?
a: x tỉ lệ nghịch với y theo hệ số tỉ lệ k nên xy=k
y tỉ lệ thuận với z theo hệ số tỉ lệ a nên y=az
=>\(az=\dfrac{k}{x}\)
=>azx=k
=>zx=k/a
Vậy: z tỉ lệ nghịch với x theo hệ số k/a
b: x tỉ lệ nghịch với y theo hệ số k nên xy=k
y tỉ lệ nghịch với z theo hệ số a nên yz=a
\(\Leftrightarrow\dfrac{k}{x}\cdot z=a\)
=>\(\dfrac{kx}{z}=a\)
=>x/z=k/a
\(\Leftrightarrow x=\dfrac{k}{a}\cdot z\)
Vậy: x tỉ lệ thuận với z theo hệ số k/a
c: x tỉ lệ thuận với y theo hệ số k nên x=ky
y tỉ lệ thuận với z theo hệ số a nên y=az
\(\Leftrightarrow az=\dfrac{x}{k}\)
=>x=akz
=>x tỉ lệ thuận với z theo hệ số ak
x và z là hai đại lượng tỉ lệ thuận với hệ số tỉ lệ là k=a/b