K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2021

có cần lời giải ko

\(\Leftrightarrow-4n+3⋮n+1\)

\(\Leftrightarrow-4n-4+7⋮n+1\)

\(\Leftrightarrow n+1\in\left\{1;7\right\}\)

hay \(n\in\left\{0;6\right\}\)

NV
5 tháng 1

\(3-4n⋮n+1\Rightarrow7-4-4n⋮n+1\)

\(\Rightarrow7-4\left(n+1\right)⋮n+1\)

\(\Rightarrow7⋮n+1\)

\(\Rightarrow n+1=Ư\left(7\right)=\left\{-7;-1;1;7\right\}\)

\(\Rightarrow n=\left\{-8;-2;0;6\right\}\)

Do n là số tự nhiên \(\Rightarrow n=\left\{0;6\right\}\)

 

\Leftrightarrow-4n-4+7⋮n+1

 

\Leftrightarrow n+1\in\left\{1;7\right\}

hoặc
n\in\left\{0;6\right\}

 

 

⇔−4�+3⋮�+1

⇔−4�−4+7⋮�+1

⇔�+1∈{1;7}

hay 

⇔−4�+3⋮�+1

⇔−4�−4+7⋮�+1

⇔�+1∈{1;7}

hay 

20 tháng 10 2023

Mình mẫu đầu với cuối nhé:

a)  Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)  

\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow3⋮d\)

 \(\Rightarrow d\in\left\{1,3\right\}\)

Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)

Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.

 e) \(ƯCLN\left(2n+3,3n+5\right)=d\)

 \(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.

13 tháng 5 2017

\(\frac{8n+193}{4n+3}\)

\(=\frac{\left(4+4\right)n+190+3}{4n+3}\)

\(=\frac{4n+3+4+190}{4n+3}\)

\(=\frac{4n+3}{4n+3}+\frac{194}{4n+3}\)

Suy ra 4n + 3 thuộc ước của 194

Còn lại bn tự làm nha

13 tháng 5 2017

a)
\(A=\frac{8n+193}{4n+3}=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
\(\Rightarrow4n+3\in U\left(187\right)=1;11;17;187\)

4n+311117187
n\(-\frac{1}{2}\)2\(\frac{7}{2}\)46

\(\Rightarrow n\in2;46\)
b)

Để A tối giản thì 187 không chhia hết cho 4n+3
\(\Rightarrow4n+3\ne4.11k+11;4n+3\ne4.17h+51\)
\(\Rightarrow n\ne11k+2;n\ne17h+12\)
 

16 tháng 12 2021

ko biet

25 tháng 12 2021

Vì 2n+1 là số lẻ

và 4n+4 là số chẵn

nên 2n+1 và 4n+4 là hai số nguyên tố cùng nhau

19 tháng 12 2019

a) Ta có: \(n+1\inƯ\left(5\right)\)

\(\Rightarrow n+1\in\left\{1;5\right\}\)

\(\Rightarrow n\in\left\{0;4\right\}\)

_Học tốt_

19 tháng 12 2019

2n+ 5 là số lẻ mà bọi của 4 là số chẵn 

vậy ước của 2n + 1 và 2n + 5 không là 4 với mọi n thuộc N

học tốt

AH
Akai Haruma
Giáo viên
17 tháng 12 2023

Lời giải:

$n^3+3n+1\vdots n+1$

$\Rightarrow (n^3+1)+3n\vdots n+1$

$\Rightarrow (n+1)(n^2-n+1)+3(n+1)-3\vdots n+1$

$\Rightarrow (n+1)(n^2-n+4)-3\vdots n+1$

$\Rightarrow 3\vdots n+1$

$\Rightarrow n+1\in \left\{1; 3\right\}$ (do $n+1$ là stn) 

$\Rightarrow n\in \left\{0; 2\right\}$