tìm x,y biết
\(\frac{x-7}{y-6}=\frac{7}{6}\) và x-y=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
a, \(\frac{x}{4}=\frac{y}{5}\) và x + y = 4
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{4}{9}\)
=> \(\hept{\begin{cases}\frac{x}{4}=\frac{4}{9}\\\frac{y}{5}=\frac{4}{9}\end{cases}}\Rightarrow\hept{\begin{cases}9x=16\\9y=20\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{16}{9}\\y=\frac{20}{9}\end{cases}}\)
b, \(\frac{x}{6}=\frac{y}{3}\) và x - 2y = 5
Ta có : \(\frac{x}{6}=\frac{y}{3}\)=> \(\frac{x}{6}=\frac{2y}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{2y}{6}=\frac{x-2y}{6-6}=\frac{5}{0}\) vô lý
c, \(\frac{x}{3}=\frac{y}{7}\) và x - 5y = 4
Ta có : \(\frac{x}{3}=\frac{y}{7}\)=> \(\frac{x}{3}=\frac{5y}{35}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{5y}{35}=\frac{x-5y}{3-35}=\frac{4}{-32}=\frac{-4}{32}=\frac{-1}{8}\)
=> \(\hept{\begin{cases}\frac{x}{3}=\frac{-1}{8}\\\frac{y}{7}=\frac{-1}{8}\end{cases}\Rightarrow}\hept{\begin{cases}8x=-3\\8y=-7\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{3}{8}\\x=-\frac{7}{8}\end{cases}}\)
d, Tương tự áp dụng như bài a,c
1) \(\frac{x+4}{7+y}=\frac{4}{7}\)\(\Rightarrow7\left(x+4\right)=4\left(7+y\right)\)
\(\Rightarrow7x+28=28+4y\)
\(\Rightarrow7x=4y\)
\(\Rightarrow\frac{x}{4}=\frac{y}{7}\)
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{22}{11}=2\)
x/4 = 2 => x = 4 x 2 = 8
y/7 = 2 => y = 2 x 7 = 14
Theo t/c dãy tỉ số=nhau:
\(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}=\frac{2x^3+2y^3}{12}=\frac{2x^3+2y^3+x^3-2y^3}{12+4}=\frac{3x^3}{16}\) (hơi tắt tí)
và \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}=\frac{x^3+y^3-\left(x^3-2y^3\right)^{ }}{6-4}=\frac{3y^3}{2}\)
Do đó \(\frac{3x^3}{16}=\frac{3y^3}{4}=>\frac{x^3}{8}=y^3=>\frac{x^6}{64}=y^6\)
\(=>\left(\frac{x^6}{64}\right).y^6=y^6.y^6=>\frac{x^6.y^6}{64}=y^{12}=\frac{64}{64}=1\)
=>y=1 hoặc y=-1
x=2 hoặc x=-2
Vậy....................
bạn ơi cho mik hs tại s ở trên là 3y^3/2 mak s ở dưới là 3x^3/16 = 3y^3/4 ?
1. \(\frac{x-5}{y-4}\) = \(\frac{5}{4}\)
=> ( x - 5 )4 = ( y - 4 )5
4x - 20 = 5y - 20
4x = 5y - 20 + 20
4x = 5y (1)
Theo bài ra , ta có x - y = 6 nên x = y + 6 (2)
Thay (2) vào (1) , có 4x = 5y <=> 4( y + 6 ) = 5y <=> 4y + 24 = 5y
=> 24 = 5y - 4y => 5y - 4y = 24 => y = 24
Thay y = 24 vào (2) ta đc : x = 24 + 6 = 30
Vậy \(\frac{x}{y}\) = \(\frac{30}{24}\) = \(\frac{5}{4}\)
\(\frac{3}{4}x=\frac{4}{5}y=\frac{6}{7}z\Leftrightarrow\frac{x}{\frac{4}{3}}=\frac{y}{\frac{5}{4}}=\frac{z}{\frac{7}{6}}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{x}{\frac{4}{3}}=\frac{y}{\frac{5}{4}}=\frac{z}{\frac{7}{6}}=\frac{z+y+z}{\frac{4}{3}+\frac{5}{4}+\frac{7}{6}}=\frac{-45}{\frac{15}{4}}=-12\)
=> x = 4/3 . (-12) = -16
=> y = 5/4 . (-12) = -15
=> z = 7/6 . (-12) =-14
\(\frac{3}{4}x=\frac{4}{5}y\Rightarrow\frac{x}{\frac{4}{5}}=\frac{y}{\frac{3}{4}}\left(1\right)\)
\(\frac{4}{5}y=\frac{6}{7}z\Rightarrow\frac{y}{\frac{6}{7}}=\frac{z}{\frac{4}{5}}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{\frac{24}{35}}=\frac{y}{\frac{9}{14}}=\frac{z}{\frac{3}{5}}\).
Theo t/c dãy tỉ số = nhau:
\(\frac{x}{\frac{24}{35}}=\frac{y}{\frac{9}{14}}=\frac{z}{\frac{3}{5}}=\frac{x+y+z}{\frac{24}{35}+\frac{9}{14}+\frac{3}{5}}=-\frac{45}{\frac{27}{14}}=-\frac{70}{3}\).
=> \(\frac{x}{\frac{24}{35}}=-\frac{70}{3}\Rightarrow x=-\frac{70}{3}.\frac{24}{35}=-16\)
=>\(\frac{y}{\frac{9}{14}}=-\frac{70}{3}\Rightarrow y=-\frac{70}{3}.\frac{9}{14}=-15\)
=>\(\frac{z}{\frac{3}{5}}=-\frac{70}{3}\Rightarrow z=-\frac{70}{3}.\frac{3}{5}=-14\)
Vậy x=-16; y=-15; z=-14.
1. Ta có: \(\frac{3+x}{5+y}=\frac{3}{5}\Leftrightarrow\hept{\begin{cases}3+x=3k\\5+y=5k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\left(k-1\right)\\y=5\left(k-1\right)\end{cases}}\)
\(\Rightarrow x+y=3\left(k-1\right)+5\left(k-1\right)=\left(3+5\right)\left(k-1\right)\)
\(\Rightarrow8\left(k-1\right)=16\)
\(\Leftrightarrow k-1=16\div8\)
\(\Leftrightarrow k-1=2\)
\(\Leftrightarrow k=2+1\)
\(\Leftrightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}x=3.3-3=6\\y=5.3-5=10\end{cases}}\)
Vậy x = 6 và y = 10
Với \(\frac{3+x}{5+y}=\frac{3}{5}\Leftrightarrow x=3a;y=5a\left(1\right)\)
Ta có :
\(x+y=3a+5a\)
hay \(16=3a+5a\)
\(\Leftrightarrow16=8a\)
\(\Leftrightarrow a=2\left(2\right)\)
Thay ( 2 ) vào ( 1 ) . Ta có :
\(x=3.2;y=5.2\)
\(\Leftrightarrow x=6;y=10\)
Vậy x = 6; y=10