K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2021

THI TỰ LÀM

13 tháng 12 2021

=(( thi với thằng em 

 

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
$(2300-22):1+1=2279$

Tổng $A$ là:
$4+\frac{(2300+22).2279}{2}=2645923$. Số này lẻ nên không thể là lũy thừa cơ số 2. 

10 tháng 3 2019

Ta có A = 2A – A = 2( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 ) – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )

2 + 4 + 2 3 + 2 4 + . . . + 2 51  – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )

= 6 + 2 3 + 2 4 + . . . + 2 51  – ( 7 + 2 3 + . . . + 2 50 ) =  2 51 - 1

Suy ra : A + 1 =  2 51

Vậy A+1 là một lũy thừa của 2

2 tháng 1 2020

26 tháng 10 2023

\(A=4+2^2+2^3+...+2^{2006}\)

\(\mathsf{Đặt}:B=2^2+2^3+...+2^{2006}\\2B=2^3+2^4+...+2^{2007}\\2B-B=(2^3+2^4+...+2^{2007})-(2^2+2^3+...+2^{2006})\\B=2^{2007}-2^2\\B=2^{2007}-4\)

Thay \(B=2^{2007}-4\) vào A, ta được:

\(A=4+(2^{2007}-4)\\\Rightarrow A=2^{2007}\)

$\Rightarrow A$ là 1 luỹ thừa của cơ số 2.

Vậy: ...

2 tháng 11 2021

\(\Rightarrow2A=8+2^3+...+2^{2022}\\ \Rightarrow2A-A=8+2^3+...+2^{2022}-4-2^2-...-2^{2021}\\ \Rightarrow A=8+2^{2022}-4-2^2=8-4-4+2^{2022}=2^{2022}\left(đpcm\right)\)

2 tháng 11 2021

\(A=2^2+2^2+2^3+...+2^{2021}=2^3+2^4+...+2^{2021}=2^{2022}\left(đpcm\right)\)

22 tháng 10 2019

Câu hỏi của phamvanquyettam - Toán lớp 6 - Học toán với OnlineMath