K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S=\left(1+3\right)+3^2\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)

4 tháng 1 2022

\(3S=3+3^2+3^3+...+3^{10}\\ \Rightarrow3S-S=3+3^2+...+3^{10}-1-3-3^2-...-3^9\\ \Rightarrow2S=3^{10}-1\\ \Rightarrow S=\dfrac{3^{10}-1}{2}\)

Ta có \(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^8+3^9\right)\)

\(S=\left(1+3\right)+3^2\left(1+3\right)+...+3^8\left(1+3\right)\\ S=\left(1+3\right)\left(1+3^2+...+3^8\right)=4\left(1+3^2+...+3^8\right)⋮4\)

 

21 tháng 2 2020

Bài giải

Ta có: S = 3 + 32 + 33 +...+ 37 + 38 + 39 

=> S = (3 + 32 + 33) +...+ (37 + 38 + 39)

=> S = 1.(3 + 32 + 33) +...+ (36.3 + 36.32 + 36.33)

=> S = 1.(3 + 32 + 33) +...+ 36.(3 + 32 + 33)

=> S = (3 + 32 + 33).(1 + 33 + 36)

=> S = 39.(1 + 33 + 36\(⋮\)-39

Vậy S \(⋮\)-39

2 tháng 9 2019

\(6+6^2+\cdot\cdot\cdot+6^{10}\)

\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)

\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)

\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)

\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)

2 tháng 9 2019

\(5^1-5^9+5^8=5\left(1-5^8+5^7\right)⋮7\Leftrightarrow5^8-5^7-1⋮7\)

\(5\equiv-2\left(mod7\right)\Rightarrow5^3\equiv-1\left(mod7\right)\Rightarrow5^8\equiv4\left(mod7\right);5^7\equiv-2\left(mod7\right)\)

\(5^8-5^7-1\equiv5\left(mod7\right):v\)

18 tháng 12 2021

gải giúp mình với

21 tháng 10 2016

\(T=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)

\(T=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)

\(T=3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+3^7.\left(1+3+3^2\right)\)

\(T=3.13+3^4.13+3^7.13\)

\(T=13.\left(3+3^4+3^7\right)\)chia hết cho 13

25 tháng 7 2023

\(S=3+3^2+3^3+3^4+...+3^9\)

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)

\(S=3\left(1+3+9\right)+3^4\left(1+3+9\right)+3^7\left(1+3+9\right)\)

\(S=3\cdot13+3^4\cdot13+3^7\cdot13\)

\(S=13\left(3+3^4+3^7\right)\)

\(S=13\cdot3\left(1+3^3+3^6\right)\)

\(S=39\cdot\left(1+3^3+3^6\right)\)

\(\Rightarrow S\) ⋮ 39

25 tháng 7 2023

Để chứng minh rằng s = 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 7 + 3 mũ 8 + 3 mũ 9 chia hết cho (-39), ta sử dụng công thức tổng cấp số cộng:

S = a(1-r^n)/(1-r)

Trong đó:

S là tổng của cấp số cộng
a là số hạng đầu tiên của cấp số cộng
r là công bội của cấp số cộng
n là số lượng số hạng trong cấp số cộng
Áp dụng công thức trên, ta có:

a = 3
r = 3
n = 9
S = 3(1-3^9)/(1-3) = 29,523

Ta thấy rằng S không chia hết cho (-39), do đó giả thiết ban đầu là sai.

21 tháng 1 2019

Ta có: S = 3  + 32 + 33 + 34 + 35 + 36 + 37 + 38  + 39

          S = (3 + 32 + 33) + (34 + 35 + 36) + (37 + 38 + 39)

          S = 39 + 33(3 + 32 + 33) + 36(3 + 32 + 33)

          S = 39 + 33.39 + 36.39

          S = 39.(1 + 33 + 36\(⋮\)-39 (vì 39 \(⋮\)-39)

30 tháng 12 2014

S=(1+2)+(2^2+2^3)+(2^4+2^5)+(2^6+2^7)+(2^8+2^9)

  =1.(1+2)+2^2.(1+2)+2^4.(1+2)+2^6.(1+2)+2^8.(1+2)

  =1.3+2^2.3+2^4.3+2^6.3+2^8.3

  =3.(1+2^2+2^4+2^6+2^8) chia hết cho 3

S=1+2+2^2+2^3+2^4+2^5+2^6+2^7

S= (1+2) + (2^2+2^3) + (2^4+2^5) + (2^6+2^7)

S=3 + 3.4 + 3.16 + 3.64

S=255

Vì 255 chia hết cho 3

=> S sẽ chia hết cho 3

Người lạ ơi bố thí cho tôi ^_^

18 tháng 10 2015

\(S=\left(3+3^{3+3^3}\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\)

\(S=39.1+39.3^3+....+39.3^{96}=>S=39\left(1+3^3+3^6+.....+3^{96}\right)\)

Vậy S chia hết cho 39