K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2022

45 nha 

$$$ 

@@@@@@@ 

HT

15 tháng 10 2023

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

15 tháng 10 2023

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

18 tháng 6 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

27 tháng 2 2018

a) Ta có 3 x − 1 10 x 2 + 2 x . 25 x 2 + 10 x + 1 1 − 9 x 2 = − 5 x + 1 2 x ( 3 x + 1 )  

b) Kết quả  = p . ( p − 3 ) 7

13 tháng 6 2019

đặt x+5=a\(\left(a\ge0\right)\) khi đó phương trình trở thành:

\(a^2-4+\sqrt{a}+\sqrt{16-a}=0\)

lại có \(\sqrt{a}+\sqrt{16-a}\ge\sqrt{a+16-a}=4\)

nên ta có:

\(a^2-4+\sqrt{a}+\sqrt{16-a}\ge a^2\)

Suy ra \(0\ge a^2\)

\(\Rightarrow a=0\)hay x+5=0

\(\Leftrightarrow x=-5\)

14 tháng 6 2019

Cảm ơn

14 tháng 6 2023

`1,(4x^3+3x^3):x^3+(15x^2+6x):(-3x)=0`

`<=> 4 + 3 + (-5x) + (-2)=0`

`<=> -5x+5=0`

`<=>-5x=-5`

`<=>x=1`

`2,(25x^2-10x):5x +3(x-2)=4`

`<=> 5x - 2 + 3x-6=4`

`<=> 8x -8=4`

`<=> 8x=12`

`<=>x=12/8`

`<=>x=3/2`

`3,(3x+1)^2-(2x+1/2)^2=0`

`<=> [(3x+1)-(2x+1/2)][(3x+1)+(2x+1/2)]=0`

`<=>( 3x+1-2x-1/2)(3x+1+2x+1/2)=0`

`<=>( x+1/2) (5x+3/2)=0`

`@ TH1`

`x+1/2=0`

`<=>x=0-1/2`

`<=>x=-1/2`

` @TH2`

`5x+3/2=0`

`<=> 5x=-3/2`

`<=>x=-3/2 : 5`

`<=>x=-15/2`

`4, x^2+8x+16=0`

`<=>(x+4)^2=0`

`<=>x+4=0`

`<=>x=-4`

`5, 25-10x+x^2=0`

`<=> (5-x)^2=0`

`<=>5-x=0`

`<=>x=5`

14 tháng 6 2023

\(x^2+8x+16=x^2+2.x.4+4^2=\left(x+4\right)^2\)

\(25-10x+x^2=5^2-2.5.x+x^2=\left(5-x\right)^2\)

18 tháng 9 2019

pt => \(x^2+10x+21=9\left(x+3\right)+4\left(x+7\right)+36-36\sqrt{x+3}-24\sqrt{x+7}\)

\(+12\sqrt{x^2+10x+21}\) ( bình phuownng hai vế)

=> \(x^2-3x-70=-36\sqrt{x+3}-24\sqrt{x+7}+12\left(3\sqrt{x+3}+2\sqrt{x+7}-6\right)\)

=> \(x^2-3x-70=-72\)

=> \(x^2-3x+2=0\)

=> \(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)( thỏa mãn điều kiện). 

Thay x=1 vào phương trình ban đầu ta có: \(4\sqrt{2}=6+4\sqrt{2}-6\)( đúng) . 

Thay x=2 vào phương trình ban đầu ta có: \(3\sqrt{5}=3\sqrt{5}+6-6\)( đúng)

Vậy x=1 và x=2 là ngiệm của phương trình ban đầu 

11 tháng 10 2019

ĐKXĐ : x lớn hơn hoặc bằng -3

Đặt \(\sqrt{x+3}\)=a, \(\sqrt{x+7}\)=b ( a,lớn hợn hoặc bằng 0, b lớn hơn 0)

=> \(\sqrt{x^2+10x+21}\)=ab

PT<=> ab=3a+2b-6

<=> ab-3a-2b+6=0

<=> a(b-3)-2(b-3)=o

<=> (a-2)(b-3)=0

<=>\(\orbr{\begin{cases}a-2=0\\b-3=0\end{cases}}\)

<=>\(\orbr{\begin{cases}a=2\\b=3\end{cases}}\)

TH1: a=2=> \(\sqrt{x+3}\)=2 <=> x+3=4<=> x=1 (t/m)

TH2: b=3 => \(\sqrt{x+7}\)=3 <=> x+7=9<=> x=2 (t/m)

Vậy phương trình có nghiệm x= 1;2

3 tháng 6 2023

`1)<=> -4x-3 + 5x+ 2 =0`

`<=> 5x-4x = -2+3`

`<=> x =1`

`2)<=> -5x +2-3x+6 =4`

`<=> -5x-3x = 4-6-2`

`<=> -8x=-4`

`<=> x=1/2`

`3) <=> -7x^2 +2 +7x^2 +14x =8`

`<=> 14x +2 =8`

`<=> 14x = 6`

`<=> x=3/7`

12 tháng 10 2021

\(x^2-25=\left(x-5\right)\left(x+5\right)\\ x^2+10x+25=\left(x+5\right)^2\\ x^2-6x+xy-6y=x\left(x-6\right)+y\left(x-6\right)=\left(x+y\right)\left(x-6\right)\\ x^2-2x-y^2+1=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)

26 tháng 12 2017

ta có pt

<=>\(\sqrt{\left(x+3\right)\left(x+7\right)}=3\sqrt{x+3}+2\sqrt{x+7}=6\)

đặt \(\sqrt{x+3}=a;\sqrt{x+7}=b\)

nên pt <=>\(ab=3a+2b-6\Leftrightarrow ab-3a-2b+6=0\)

\(\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\)

đến đây thì dễ rồi

26 tháng 12 2017

biêu thức dài dài trong căn pt thành nhân tử là \(\sqrt{\left(x+3\right)\left(x+7\right)}\)

xong rùi bn pt thành nhân tử sẽ có dạng \(\left(\sqrt{x+3}-2\right)\left(\sqrt{x+7}-3\right)=0\)

đến day bn làm tiếp nhé