K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, \(\frac{1}{2009}+\frac{2}{2009}+...+\frac{2008}{2009}\\ \frac{\left(1+2008\right)\cdot2008\div2}{2009}=\frac{2017036}{2009}\)

28 tháng 12 2015

a,S1=1+(-2)+3+(-4)+..........+2009+(-2010)

S1=-1.(2010:2)

S1=-1005

b,S2=1+(-2)+(-3)+4+5+(-6)+(-7)+............+2008+2009+(-2010)

S2=-1.(2010:2)

S2=-1.1005

S2=-1005

5 tháng 6 2020

Bài làm:

\(A=1-2+3-4+5-...-2008+2009\)

\(A=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(2007-2008\right)+2009\)

\(A=-1-1-1-...-1+2009\)(1004 số -1)

\(A=-1004+2009=1005\)

\(B=1+2-3-4+5+6-7-...-2007-2008+2009+2010\)

\(B=1+\left(2-3-4+5\right)+\left(6-7-8+9\right)+...+\left(2006-2007-2008+2009\right)+2010\)

\(B=1+0+0+...+0+2010\)

\(B=2011\)

Học tốt!!!!

Gọi \(S=\frac{2009}{1}+\frac{2008}{2}+...+\frac{1}{2009}\)

\(\Rightarrow S=\frac{2010-1}{1}+\frac{2010-2}{2}+...+\frac{2010-2009}{2009}\)

\(\Rightarrow S=2010-1+\frac{2010}{2}-1+...+\frac{2010}{2009}-1\)

\(\Rightarrow S=2010+\frac{2010}{2}+...+\frac{2010}{2009}-\left(1+1+..+1\right)\)

\(\Rightarrow S=2010+\frac{2010}{2}+...+\frac{2010}{2009}-2009\)

\(\Rightarrow S=\frac{2010}{2}+\frac{2010}{3}+...+\frac{2010}{2009}+1\)

\(\Rightarrow S=\frac{2010}{2}+\frac{2010}{3}+..+\frac{2010}{2009}+\frac{2010}{2010}\)

\(\Rightarrow S=2010\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}\right)\)

Khi đó \(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}}{2010\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}\right)}=\frac{1}{2010}\)