K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2016

ababab = ab x 10101

= ab x 3 x 7 x 13 x 37

=> ab chia hết cho 3 x 7 x 13 x 37 

Mà ab có 2 chữ số

Nên ab không thể đồng thời chia hết cho 3 x 7 x 13 x 37

Vậy ababab không phải số chính phương

28 tháng 2 2016

ababab = ab x 10101

= ab x 3 x 7 x 13 x 37

Mà ab chia hết cho 3 x 7 x 13 x 37

Mà ab có 2 chữ số

Nên ab không thể đồn thời chia hết cho 3 x 7 x 13 x 37

Vậy ababab không phải số chính phương

29 tháng 6 2021

a) A = abc + bca + cab 

=> A = ( 100a + 10b + c ) + ( 100b + 10c + a)+ ( 100c + 10a + b)

=>  A = 100a + 10b + c + 100b + 10c + a + 100c + 10a +b

=>  A = 111a + 111b + 111c

=> A = 111( a+b+c)

vì 0< a+b+c ≤ 27 nên a + b + c không chia hết cho 37

mặt khác ( 3 ; 37)=1 nên 3( a+b+c) không chia hết cho 37

=> A không phải là số chính phương

b) 

ababab=ab.10101

để ab là sô chính phương thì ab = 10101

mà ab là số có 2 chứ số

⇒ ababab không phải là số chính phương

29 tháng 6 2021

no la b 3 ban oi
 

24 tháng 9 2017

mị lớp > chị nên đừng hỏi tui cái này

22 tháng 12 2016

Mình ko nhớ câu a) 2004000 

Nhắc lại lý thuyết: 
1. Trong khai triển số chính phương thành tích các thừa số nguyên tố mỗi ước nguyên tố được nâng lên lũy thừa chẵn. 
CM: n = p1^r1 * p2^r2 *... * pk^rk => n² = p1^(2r1) * p2^(2r2) * ... * pk^(2rk) 
2. Kết luận 1 ▲: Số chính phương chia hết cho p^(2k + 1) thì chia hết cho p^(2k + 2) 
CM: n² chia hết cho p^(2k + 1) => p là ước của n => n² = a*p^(2m) (do 1) => 2m > 2k + 1 (không có 2m = 2k + 1 vì số chẵn không thể bằng số lẻ. Không thể có 2m < 2k + 1 vì lúc đó n² không chia hết cho p^(2k + 1)) 
=> 2m ≥ 2k + 2 => n² chia hết cho p^(2k + 2) 
3. Kết luận 2 ♦: Nếu số n chia hết cho p^(2k + 1) nhưng không chia hết cho p^(2k + 2) thì không là số chính phương (vì nếu chính phương thì từ 2 => n chia hết cho p^(2k + 2), mâu thuẫn) 

4. Số chính phương lẻ là bình phương của số lẻ nên chia cho 4 dư 1 ((2k + 1)² = 4(k² + k) + 1) 
Kết luận: số lẻ chia cho 4 dư 3 không thể là số chính phương ♥ 

Trong các phát biểu trên p1, ..., pk, p là số nguyên tố, m và k nguyên 
--------------- 

b) n = (abcabc) = (abc) * 1000 + (abc) = (abc) * 1001 = (abc) * 7 * 11 * 13 
Nếu n chính phương thì n phải chia hết cho 7², 11², 13² (do ▲) => n chia hết cho 7² * 11² * 13² => (abc) chia hết cho 7*11*13 = 1001, là điều không thể. Vậy n không chính phương. 

c) n = (abba) = 1001a + 110b = 11*(143a + 10b) = 11² * (8a + b) + 11 * (3a - b) 
Nếu n chính phương thì n phải chia hết cho 11² (do chia hết cho 11), tức 3a - b phải chia hết cho 11 

Với a = 2, 3, 7, 8 dễ thấy n không chính phương (số chính phương chỉ tận cùng bằng, 0, 1, 4, 5, 6, 9) 

Với a = 1 đk cần để n chính phương là 3a - b = 3 - b phải chia hết cho 11, tức b = 3. Nhưng 1331 = 11³ không là số chính phương (do ♦ nhưng cũng do ♥ vì chia cho 4 dư 3 do 31 chia cho 4 dư 3). 

Với a = 4 đk cần để n chính phương là 3a - b = 12 - b phải chia hết cho 11, tức b = 1, nhưng số 4114 không là số chính phương do chia hết cho 2 nhưng không chia hết cho 2² (do ♦) vì 14 không chia hết cho 4 

Với a = 5 đk cần để n chính phương là 3a - b = 15 - b phải chia hết cho 11, tức b = 4, nhưng số 5445 không chính phương vì số chính phương tận cùng bằng 5 thì phải tận cùng bằng 25 

Với a = 6 đk cần để n chính phương là 3a - b = 18 - b phải chia hết cho 11, tức b = 7, nhưng số 6776 = 6800 - 24 = 17 * 4² *25 - 3*2³ do chia hết cho 2³ nhưng không chia hết cho 2^4 nên không chính phương (do ♦) 

Với a = 9 đk cần để n chính phương là 3a - b = 27 - b phải chia hết cho 11, tức b = 5, nhưng số 9559 không là số chính phương do chia chia cho 4 dư 3 (do ♥) vì 59 chia cho 4 dư 3 

=> số (abba) với a > 0 không là số chính phương. 

2 tháng 1 2020

Câu hỏi của nguyễn danh bảo - Toán lớp 6 - Học toán với OnlineMath

25 tháng 9 2016

ta có ababab=ab.10101

để ababab là số chính phương thì ab chỉ có thể là số 10101

mà ab là số có hai chữ số.

=> ababab không phải là số chính phương

mik giải nhanh cho bn rùi đó bn cho mik đê!^-^

25 tháng 9 2016

ababab = 10101ab =3.7.13.37.ab

mà ab < 100

 => trong tích các thừa số nguyên tố của ab không có đủ các thừa số 3,7,13,37 không thể đều chẵn ( \(\ge\)2 )

Vậy số ababab không phải là số chính phương

30 tháng 9 2015

Ta sử dụng nhận xét: Nếu \(n\) là số nguyên mà \(n-1\vdots3\)  thì \(n^3-1\vdots9.\)  Thực vậy ta có \(n=3k+1\to n^3-1=3k\left(n^2+n+1\right)=3k\left(n^2-1+n-1+3\right)\vdots3\times3=9.\) (Do \(n-1,n^2-1\vdots3\)).

Ta có \(1993^{1194}-1=\left(1993^3\right)^{398}-1\vdots1993^3-1\vdots9,\) do \(1993-1=1992\vdots3.\) Ta cũng có \(19^9-1\vdots18\vdots9\to19^9-1\vdots9.\)  Thành thử 

\(A=1+19^9+93^{199}+1993^{1194}=3+\left(19^9-1\right)+\left(1993^{1194}-1\right)+93^{199}\)  chia cho 9 có dư là 3. Vậy \(A\) chia 9 dư 3. Nếu là A là số chính phương, thì vì A chia hết cho 3 nên A cũng chia hết cho 9. Suy ra A chia 9 dư 0, mâu thuẫn. 

Vậy A không phải là số chính phương.