K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2021

Số tự nhiên đó có dạng \(\overline{abc}\left(1\le a\le9;0\le b,c\le9;a,b,c\in\mathbb{N}\right)\)

Theo đề bài ta có: \(a+b+c=21;c>b;\overline{cba}-\overline{abc}=198\left(1\right)\)

Hay \(\left\{{}\begin{matrix}a+b+c=21\\99\left(c-a\right)=198\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+c=21\\c-a=2\end{matrix}\right.\Rightarrow\left(c-2\right)+b+c=21\)

\(\Leftrightarrow2c+b=23.\) Mà ta có: \(23=2c+b< 3c\Rightarrow c>\dfrac{23}{3}\Rightarrow9\ge c\ge8\) (do $c\in \N$)

Với $c=9$ thì $b=5$ suy ra $a=7.$ Vậy số đó là $759.$

Với $c=8$ thì $b=7$ suy ra $a=6.$ Vậy số đó là $678$

Lâu không giải toán $6$ nên mình không chắc về cách trình bày đâu bạn nhé.

16 tháng 1 2021

mơn bạn nhé :)))

 

AH
Akai Haruma
Giáo viên
9 tháng 6

Lời giải:

Gọi số cần tìm là $\overline{abc}$ với $a,b,c$ là số tự nhiên có 1 chữ số, $a>0$.

Theo bài ra ta có:

$\overline{cba}-\overline{abc}=792$

$(100c+10b+a)-(100a+10b+c)=792$

$99c-99a=792$

$99(c-a)=792$

$c-a=8$

$c=a+8> 0+8=8(1)$

Mặt khác:

$c=3b$

$\Rightarrow c\vdots 3(2)$

Từ $(1); (2)\Rightarrow c=9$.

$a=c-8=9-8=1$
$b=c:3=9:3=3$

Vậy số cần tìm là $139$

22 tháng 3 2020

Gọi số cần tìm là ab ( có gạch ngang trên đầu)
Theo bài ra ta có:  a - b =5 (1)
nếu viết xen chữ số 0 vào giữa số hàng chục và hàng đơn vị thì số mới là: a0b ( có gạch ngang trên đầu)
=> a0b - ab = 630
=> 100a + 0 + b - 10a - b = 630
=> 90a = 630
=> a = 7
Thay a = 7 vào (1) ta đc b=2
Vậy số cần tìm là 72

học tốt

22 tháng 3 2020

Gọi số cần tìm là ab, ta có:

ab + 630 = a0b

a x 10 + b + 630 = a x 100 + b

b + 630 - b = a x 100 - a x 10

630 = a x 90 \(\Rightarrow a=7\)

\(\Rightarrow b=7-5=2\)

Vậy số cần tìm là 72.