Tìm số tự nhiên abc thỏa mãn :abc= n2 - 1 và cba=n2-4n+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: abc = 100.a + 10.b +c = n^2 - 1 (1)
cba = 100.c + 10.b + a = n^2- 4n + 4 (2)
Lấy (1) trừ (2) ta được:
99.(a – c) = 4n – 5
Suy ra 4n - 5 chia hết 99
Vì 100 $\le$≤ abc $\le$≤ 999 nên:
100 $\le$≤ n^2 -1 $\le$≤ 999 => 101 $\le$≤ n^2 $\le$≤ 1000 => 11 $\le$≤ 31 => 39 $\le$≤ 4n - 5 $\le$≤ 119
Vì 4n - 5 chia hết 99 nên 4n - 5 = 99 => n = 26 => abc = 675
Thử lại thấy đúng. Vậy có một số tự nhiên có ba chữ số thoả mãn yêu cầu đề bài là 675
Giữ lời hứa nha!
Tham khảo thêm ở: Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
ĐK :0≤b≤9;0<a,c≤9;100≤n2−1≤999⇒11≤n≤31;n∈N0≤b≤9;0<a,c≤9;100≤n2−1≤999⇒11≤n≤31;n∈N
Trừ từng vế pt (1) và (2) ta có
99(a−c)=4n−599(a−c)=4n−5 Vì (a−c)(a−c) là số tự nhiên nên 4n−54n−5 chia hết cho 99 mà 39≤4n−5≤11939≤4n−5≤119
⇒4n−5=99⇒n=26⇒abc=262−1=675⇒4n−5=99⇒n=26⇒abc=262−1=675 (nhận)
Thử lại: cba=576=242=(26−2)2cba=576=242=(26−2)2 ( đúng)
Ta có: abc = 100.a + 10.b +c = n^2 - 1 (1) cba = 100.c + 10.b + a = n^2- 4n + 4 (2) Lấy (1) trừ (2) ta được: 99.(a – c) = 4n – 5 Suy ra 4n - 5 chia hết 99 Vì 100 ≤ ≤≤ abc ≤ ≤≤ 999 nên: 100 ≤ n^2 -1 ≤ ≤≤ 999 => 101 ≤ ≤≤ n^2 ≤ ≤≤ 1000 => 11 ≤ ≤≤ 31 => 39 ≤ ≤≤ 4n - 5 ≤ ≤≤ 119 Vì 4n - 5 chia hết 99 nên 4n - 5 = 99 => n = 26 => abc = 675
675 (vio vòng 14 đúng hơm) mk giải rồi 300/300 cứ yên tâm đi