Cho tam giác ABC có 3 góc nhọn và O là điểm bất kì nằm trong tam giác đó. Từ O hạ OM vuông góc với AC(M thuộc AC) OI vông góc với AB (I thuộc AB) OH vuông góc với BC (H thuộc BC) Chứng minh rằng AI2+BH2+CM2=AM2+CH2+BI2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Pytago lên các tam giác vuông
+) \(\Delta\)AOI vuông tại I và \(\Delta\) AOM vuông tại M
=> AI2+IO2=AO2=AM2+OM2
+) \(\Delta\)BOI vuông tại I và \(\Delta\)BOH vuông tại H
=> BI2+IO2=BO2=BH2+CH2
+) \(\Delta\)COM vuông tại M và \(\Delta\)COH vuông tại H
=> CM2+MO2=CO2=CH2+OH2
\(\Rightarrow\hept{\begin{cases}AI^2+IO^2=AM^2+CM^2\left(1\right)\\BH^2+CH^2=BI^2+IO^2\left(2\right)\\CM^2+MO^2=CH^2+OH^2\left(3\right)\end{cases}}\)
Cộng vế với vế của (1)(2)(3)
\(\Rightarrow AI^2+BH^2+CM^2+\left(IO^2+CH^2+MO^2\right)=\left(IO^2+OH^2+MO^2\right)+AM^2+BI^2+AH^2\)
\(\Rightarrow AI^2+BH^2+CM^2=AM^2+CH^2+CH^2\)hay \(AB^2+BH^2+CM^2=AM^2+CH^2+BI^2\left(đpcm\right)\)
a: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
nên \(\widehat{ABD}=\widehat{AMD}\)
c: Xét ΔAID vuông tại I và ΔAKD vuông tại K có
AD chung
\(\widehat{IAD}=\widehat{KAD}\)
Do đó: ΔAID=ΔAKD
Suy ra: AI=AK
=>BI=KM