K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

giải bài toán mik với các bạn ơi !

27 tháng 2 2016

sai đề rùi

7 tháng 5 2015

Ta tìm số tự nhiên n để \(\frac{n+7}{n-2}\) rút gọn được

Gọi d là ước chung nguyên tố của n + 7 và n - 2

=> n+ 7 chia hết cho d

n - 2 chia hết cho d

=> (n+7) - (n- 2) chia hết cho d => 9 chia hết cho d

Mà d nguyên tố => d = 3

=> tìm n để n + 7 chia hết cho 3 và n - 2 chia hết cho 3

Do n + 7 = (n - 2) + 9 nên nếu n - 2 chia hết cho 3 thì n+ 7 sẽ chia hết cho 3

Vậy chỉ cần tìm n để n - 2 chia hết cho 3 => n - 2 = 3k (k \(\in\) N* vì n > 2) => n = 3k + 2

Với n = 3k + 2 (k \(\in\) N*) thì \(\frac{n+7}{n-2}\) rút gọn được 

=> Với n \(\ne\) 3k + 2 (k \(\in\) N*) hay n là số chia hết cho 3 hoặc chia cho 3 dư 1 thì \(\frac{n+7}{n-2}\) tối giản

11 tháng 2 2017

đúng rồi

17 tháng 4 2020

+Với n thuộc Z thì n+7 và n+2 là các số nguyên khác 0.

+Giả sử n+7/n+2 chưa tối giản

=>n+7 và n+2 chia hết cho số nguyên tố d 

+Vì (n+7) chia hết cho d (bạn viết kí hiệu chia hết nha!!)

      (n+2) chia hết cho d

=>(n+7)-(n+2) chia hết cho d

=>n+7-n-2 chia hết cho d

=>5 chia hết cho d

Mà d là số nguyên tố

nên d=5

+Với d=5 

=>(n+2) chia hết cho 5

=>n+2=5k(k thuộc N sao)

    n     =5k-2

Vậy n khác (viết kí hiệu nha) 5k-2( k thuộc N sao), n > -2 thì n+7/n+2 là phân số tối giản.

Chúc bạn học tốt!!

Bạn nhớ k đúng cho mình nha!! 

9 tháng 1 2022

+Với n thuộc Z thì n+7 và n+2 là các số nguyên khác 0.

+Giả sử n+7/n+2 chưa tối giản

=>n+7 và n+2 chia hết cho số nguyên tố d 

+Vì (n+7) chia hết cho d 

      (n+2) chia hết cho d

=>(n+7)-(n+2) chia hết cho d

=>n+7-n-2 chia hết cho d

=>5 chia hết cho d

Mà d là số nguyên tố

nên d=5

+Với d=5 

=>(n+2) chia hết cho 5

=>n+2=5k(k thuộc N sao)

    n     =5k-2

Vậy n khác 5k-2( k thuộc N sao), n > -2 thì n+7/n+2 là phân số tối giản.

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

6 tháng 8 2015

Không khó lắm nhưng dài => Không làm nữa

28 tháng 4 2016

Gọi d là ƯC(n+1 ; n+2)

=> n+1 chia hết cho d  và n+2 chia hết cho d

=>(n+2)-(n+1) chia hết d

=> 1 chia hết d

=> D=1

Vậy n+1/n+2 là phân số tối giản

28 tháng 4 2016

Để n+3/n-2 \(\in\) Z

=> n+3 chia hết n-2

=> n-2 + 5 chia hết n-2

=> 5 chia hết n-2

=> n-2 \(\in\) Ư(5)={-1;1;-5;5}

Ta có: 

n-2-11-55
n13-37
20 tháng 4 2020

Bg

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = \(\frac{n-1}{n-2}\) (n \(\in\)\(ℤ\); n \(\ne2\))

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) \(⋮\)d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 \(⋮\)d

=> d \(\in\)Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n \(\in\)Z và n \(\ne2\)thì M là phân số tối giản.

5 tháng 3 2021

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 d

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.