K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

<=> x -2 = 0

      x +9 =0

<=> x = 2 , x = -9 

Vậy .............

11 tháng 12 2021

\(\left(x-2\right)\left(x+9\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x+9=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-9\end{matrix}\right.\)

3 tháng 4 2023

\(2x^2-\left(m+1\right)x+m-1=0\left(1\right)\)

Để phương trình (1) có nghiệm thì:

\(\Delta\ge0\Rightarrow\left(m+1\right)^2-4.2.\left(m-1\right)\ge0\)

\(\Leftrightarrow m^2+2m+1-8m+8\ge0\)

\(\Leftrightarrow\left(m-3\right)^2\ge0\) (luôn đúng)

Vậy \(\forall m\) thì phương trình (1) luôn có nghiệm.

Giả sử phương trình (1) có 2 nghiệm x1, x2 với \(x_1\ge x_2\) \(\Rightarrow x_1-x_2\ge0\)

Theo định lí Viete ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m-1}{2}\end{matrix}\right.\)

Vì hiệu 2 nghiệm bằng tích của chúng nên ta có:

\(x_1-x_2=\left|x_1x_2\right|\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=\left(x_1x_2\right)^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=\left(x_1x_2\right)^2\)

\(\Leftrightarrow\left(\dfrac{m+1}{2}\right)^2-4.\dfrac{m-1}{2}=\left(\dfrac{m-1}{2}\right)^2\)

\(\Leftrightarrow\left(m+1\right)^2-8\left(m-1\right)=\left(m-1\right)^2\)

\(\Leftrightarrow m^2+2m+1-8m+8=m^2-2m+1\)

\(\Leftrightarrow4m=8\Leftrightarrow m=2\)

Vậy \(m=2\)

 

 

x1-x2=(m-1)/2

=>(x1-x2)^2=(m-1)^2/4

=>(x1+x2)^2-4x1x2=1/4(m^2-2m+1)

=>(m+1/2)^2-4*(m-1)/2=1/4m^2-1/2m+1/4

=>m^2+m+1/4-2m+2-1/4m^2+1/2m-1/4=0

=>3/4m^2-1/2m+2=0

=>3m^2-2m+8=0

=>PTVN

2 tháng 1 2021

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

17 tháng 2 2022

\(\left\{{}\begin{matrix}x+my=3\\x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)y=2\\x=1-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{m-2}\\x=1-\dfrac{4}{m-2}=\dfrac{m-6}{m-2}\end{matrix}\right.\)

a, Ta có x < 0 ; y > 0 

\(x< 0\Rightarrow\dfrac{m-6}{m-2}< 0\)

Ta có : m - 2 > m - 6 

\(\left\{{}\begin{matrix}m-2>0\\m-6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>2\\m< 6\end{matrix}\right.\Leftrightarrow2< m< 6\)

\(y>0\Leftrightarrow\dfrac{2}{m-2}>0\Rightarrow m>2\)

Vậy 2 < m < 6 

b, \(x-2y=3\Rightarrow\dfrac{m-6}{m-2}-\dfrac{4}{m-2}=3\Leftrightarrow\dfrac{m-10}{m-2}=3\)

\(\Rightarrow m-10=3m-6\Leftrightarrow2m=-4\Leftrightarrow m=-2\)

8 tháng 6 2021

PT có nghiệm `<=> \Delta' >=0`

`<=> (m-1)^2-(m^2+2)>=0`

`<=>-2m-1>=0`

`<=>m <= -1/2`

Viet: `x_1+x_2=2m-2`

`x_1x_2=m^2+2`

`x_1^2+x_2^2=10`

`<=>(x_1+x_2)^2-2x_1x_2=10`

`<=>(2m-2)^2-2(m^2+2)=10`

`<=> 2m^2-8m=10`

`<=>` \(\left[{}\begin{matrix}m=-1\left(TM\right)\\m=5\left(L\right)\end{matrix}\right.\)

Vậy `m=-1`.

10 tháng 5 2021

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow\left(2m-2\right)x-2=0\)

\(\Leftrightarrow\left(2m-2\right)x=2\)

\(\Leftrightarrow x=\dfrac{2}{2m-2}\)

Để phương trình đã cho có nghiệm âm thì:

\(\dfrac{2}{2m-2}< 0\)

\(\Leftrightarrow2m-2< 0\)

\(\Leftrightarrow2m< 2\)

\(\Leftrightarrow m< 1\)

Vậy \(m< 1\) thì phương trình đã cho có nghiệm âm.

10 tháng 5 2021

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2+mx-2x-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow\left(2m-2\right)x-2=0\left(1\right)\)

+) Nếu \(m=1\)\(\rightarrow\left(1\right)\Leftrightarrow0x-2=0\left(V_{n_o}\right)\)

+) Nếu \(m\ne1\rightarrow x=\dfrac{2}{2m-2}\)

Để \(x< 0\Leftrightarrow\dfrac{2}{2m-2}< 0\) mà \(2>0\Leftrightarrow2m-2< 0\Leftrightarrow m< 1\)

13 tháng 1 2023

Ptr có: `\Delta'=[-(m-1)^2]+4m=m^2-2m+1+4m=(m+1)^2 >= 0`

  `=>{(x_1+x_2=[-b]/a=2m-2),(x_1.x_2=c/a=-4m):}`

  Để ptr có ít nhất `1` nghiệm không âm

`<=>2` nghiệm đều `>= 0`, hoặc có duy nhất `1` nghiệm và `>= 0` hoặc `1` nghiệm `>= 0` và `1` nghiệm `< 0`

`@TH1: 2` nghiệm đều `>= 0`

    `=>{(x_1.x_2 >= 0),(x_1+x_2 >= 0):}`

`<=>{(-4m >= 0),(2m-2 >= 0):}`

`<=>{(m <= 0),(m >= 1):}=>` Không có `m` t/m

`@TH2:` Có duy nhất `1` nghiệm và nghiệm đó `>= 0`

    `=>{((m+1)^2=0),(x=[-b']/a):}`

`<=>{(m=-1),(x=m-1):}`

`<=>{(m=-1),(x=-2):}` (ko t/m `x >= 0`)

`@TH3:` Có `2` nghiệm pb có `1` nghiệm `< 0` và `1` nghiệm `>= 0`

  `=>{(m+1 \ne 0),(x_1.x_2 < 0):}`

`<=>{(m \ne -1),(-4m < 0):}`

`<=>{(m \ne -1),(m > 0):}`

`<=>m > 0`

Vậy `m > 0` thì ptr đã cho có ít nhất `1` nghiệm không âm.

23 tháng 5 2021

\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)

=> pt luôn có hai nghiệm pb

Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)

Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)

\(\Rightarrow P\ge0\)

Dấu = xảy ra khi m=-1

NV
11 tháng 4 2022

Chắc là tìm n?

\(\Delta'=\left(n-1\right)^2+n+1=n^2-n+2=\left(n-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0;\forall n\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi n

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(n-1\right)\\x_1x_2=-n-1\end{matrix}\right.\)

Đặt \(P=\left|x_1-x_2\right|\)

\(\Rightarrow P=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{4\left(n-1\right)^2+4\left(n+1\right)}=2\sqrt{n^2-n+2}\)

\(=2\sqrt{\left(n-\dfrac{1}{2}\right)^2+\dfrac{7}{4}}\ge\sqrt{7}\)

\(P_{min}=\sqrt{7}\) khi \(n-\dfrac{1}{2}=0\Rightarrow n=\dfrac{1}{2}\)

NV
20 tháng 3 2022

Phương trình có nghiệm khi:

\(\Delta'=\left(m+1\right)^2-\left(m^2+m+1\right)\ge0\)

\(\Rightarrow m\ge0\)

Khi đó: \(\left\{{}\begin{matrix}x_1=m+1-\sqrt{m}\\x_2=m+1+\sqrt{m}\end{matrix}\right.\)