K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

16 tháng 3 2019

Do  A = 98 99 + 1 98 89 + 1 > 1 nên  A = 98 99 + 1 98 89 + 1 > 98 99 + 1 + 97 98 89 + 1 + 97 = 98 98 98 + 1 98 98 88 + 1 = 98 98 + 1 98 88 + 1 = B

Vậy A > B

28 tháng 11 2017

a) Do A = 98 99 + 1 98 89 + 1 > 1  nên

A = 98 99 + 1 98 89 + 1 > 98 99 + 1 + 97 98 89 + 1 + 97 = 98 ( 98 98 + 1 ) 98 ( 98 88 + 1 ) = 98 98 + 1 98 88 + 1 = B

Vậy A > B

b) Do C = 100 2008 + 1 100 2018 + 1  < 1 nên

C= 100 2008 + 1 100 2018 + 1 > 100 2008 + 1 + 99 100 2018 + 1 + 99 = 100 ( 100 2007 + 1 ) 100 ( 100 2017 + 1 ) = 100 2007 + 1 100 2017 + 1 = D

Vậy C > D.

Sửa đề: \(C=\dfrac{17^{99}+1}{17^{99}-1}\)

\(C=\dfrac{17^{99}-1+2}{17^{99}-1}=1+\dfrac{2}{17^{99}-1}\)

\(D=\dfrac{17^{98}-1+2}{17^{98}-1}=1+\dfrac{2}{17^{98}-1}\)

17^99>17^98

=>17^99-1>17^98-1

=>C<D

21 tháng 12 2016

a) \(1010+1111+1212+.....+9898+9999\)\(=\frac{\left(1010+9999\right)\cdot\left(\frac{9999-1010}{1111-1010}+1\right)}{2}\)\(=\frac{11009\cdot\left(\frac{8989}{101}+1\right)}{2}\)\(=\frac{11009\cdot\left(89+1\right)}{2}\)\(=\frac{11009\cdot90}{2}\)\(=\frac{990810}{2}\)\(=495405\)

22 tháng 12 2016

a) Khoảng cách của dãy số là:

1111-1010=101;1212-1111=101;...

Số số hạng của dãy số là:

(9999-1010):101+1=90(số)

Tổng:

(1010+9999)*90:2=495405

Đ/s:495405

Nhớ k mk nha!

18 tháng 12 2021

\(a,ĐK:x>0;x\ne4\\ E=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}-2}{2\sqrt{x}}\\ b,x=19-8\sqrt{3}=\left(4-\sqrt{3}\right)^2\\ \Leftrightarrow E=\dfrac{4-\sqrt{3}-2}{2\left(4-\sqrt{3}\right)}=\dfrac{\left(2-\sqrt{3}\right)\left(4+\sqrt{3}\right)}{26}=\dfrac{5-2\sqrt{3}}{26}\\ c,E=-1\Leftrightarrow\sqrt{x}-2=-2\sqrt{x}\\ \Leftrightarrow3\sqrt{x}=2\Leftrightarrow\sqrt{x}=\dfrac{2}{3}\Leftrightarrow x=\dfrac{4}{9}\left(tm\right)\\ d,E=\dfrac{1}{\sqrt{x}}\Leftrightarrow\dfrac{\sqrt{x}-2}{2}=1\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\left(tm\right)\)

\(e,E>0\Leftrightarrow\sqrt{x}-2>0\left(2\sqrt{x}>0\right)\Leftrightarrow x>4\\ f,E=\dfrac{\sqrt{x}-2}{2\sqrt{x}}=\dfrac{1}{2}-\dfrac{1}{\sqrt{x}}< \dfrac{1}{2}\left(-\dfrac{1}{\sqrt{x}}< 0\right)\\ g,\dfrac{1}{E}=\dfrac{2\sqrt{x}}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)+4}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(4\right)=\left\{-1;0;1;2;4\right\}\left(\sqrt{x}-2>-2\right)\\ \Leftrightarrow\sqrt{x}\in\left\{1;2;3;4;6\right\}\\ \Leftrightarrow x\in\left\{1;9;16;36\right\}\left(x\ne4\right)\\ h,x>4\Leftrightarrow\sqrt{x}-2>0\\ \Leftrightarrow E=\dfrac{\sqrt{x}-2}{2\sqrt{x}}>0\Leftrightarrow E\ge\sqrt{E}\)

30 tháng 8 2023

9910