K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

Answer:

\(\left(5-x\right)\left(6+6x\right)\left(2x-4\right)=0\)

Trường hợp 1: \(5-x=0\Rightarrow x=5\)

Trường hợp 2: \(6+6x=0\Rightarrow6x=-6\Rightarrow x=-1\)

Trường hợp 3: \(2x-4=0\Rightarrow2x=4\Rightarrow x=2\)

3 tháng 11 2018

\(a,x=3x^2\Rightarrow x-3x^2=0\Rightarrow x\left(1-3x\right)=0\Rightarrow\orbr{\begin{cases}x=0\\1-3x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)

\(b,\left(2x-6\right)\left(x+4\right)+2\left(2x-6\right)=0\)

\(\Rightarrow\left(2x-6\right)\left(x+4+2\right)=0\)

\(\Rightarrow\left(2x-6\right)\left(x+6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-6=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)

\(c,\left(2x-5\right)\left(x+9\right)+6x-15=0\)

\(\Rightarrow\left(2x-5\right)\left(x+9\right)+3\left(2x-5\right)=0\)

\(\Rightarrow\left(2x-5\right)\left(x+9+3\right)=0\)

\(\Rightarrow\left(2x-5\right)\left(x+12\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-5=0\\x+12=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-12\end{cases}}\)

a: (2x+1)(3-x)(4-2x)=0

=>(2x+1)(x-3)(x-2)=0

hay \(x\in\left\{-\dfrac{1}{2};3;2\right\}\)

b: 2x(x-3)+5(x-3)=0

=>(x-3)(2x+5)=0

=>x=3 hoặc x=-5/2

c: =>(x-2)(x+2)+(x-2)(2x-3)=0

=>(x-2)(x+2+2x-3)=0

=>(x-2)(3x-1)=0

=>x=2 hoặc x=1/3

d: =>(x-2)(x-3)=0

=>x=2 hoặc x=3

e: =>(2x+5+x+2)(2x+5-x-2)=0

=>(3x+7)(x+3)=0

=>x=-7/3 hoặc x=-3

f: \(\Leftrightarrow2x^3+5x^2-3x=0\)

\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

hay \(x\in\left\{0;-3;\dfrac{1}{2}\right\}\)

30 tháng 1 2024

Ta có : \(x^2-2x-1=0 \)
\(\Leftrightarrow \)\((x-1)^2=2\)
\(\Leftrightarrow \)\(\left[\begin{array}{} x-1=\sqrt{2}\\ x-1=-\sqrt{2} \end{array} \right.\)
Đặt P = \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
          =\(\dfrac{(x^6-2x^5-x^4)-(4x^5-8x^4-4x^3)+(5x^4-10x^3-5x^2)-(2x^3-4x^2-2x)+(x^2-2x-1)+2016} {(x^6-2x^5-x^4)+(2x^5-4x^4-2x^3)+(5x^4-10x^3-5x^2)+(4x^3-8x^2-4x)+(x^2-2x-1)+12x+2016}\)
         =\(\dfrac{x^4(x^2-2x-1)-4x^3(x^2-2x-1)+5x^2(x^2-2x-1)-2x(x^2-2x-1)+(x^2-2x-1)+2016} {x^4(x^2-2x-1)+2x^3(x^2-2x-1)+5x^2(x^2-2x-1)+4x(x^2-2x-1)+(x^2-2x-1)+12x+2016}\)
         =\(\dfrac{2016}{12x + 2016}\)
         =\(\dfrac{2016}{12(x+1)+2004}\)
         =\(\dfrac{168}{x+1+167}\)
         =\(\left[\begin{array}{} \dfrac{168}{\sqrt{2}+167}\\ \dfrac{168}{-\sqrt{2}+167} \end{array} \right.\)
Chú thích: Hình như mẫu là \(-6x\) chứ không phải \(6x \) bạn ạ. Hay là mình phân tích sai thì cho mình xin lỗi nhé.

15 tháng 2 2020

7)(16-8x)(2-6x)=0  

=> 16 - 8x = 0 hoặc 2 - 6x = 0

=> 16 = 8x hoặc 2 = 6x

=> x = 2 hoặc x = 1/3
8) (x+4)(6x-12)=0  

=> x + 4 = 0 hoặc 6x - 12 = 0

=> x = -4 hoặc x = 2
9) (11-33x)(x+11)=0 

=> 11 - 33x = 0 hoặc x + 11 = 0

=> x = 1/3 hoặc x = -11
10) (x-1/4)(x+5/6)=0 

=> x - 1/4 = 0 hoặc x + 5/6 = 0

=> x = 1/4 hoặc x = -5/6
11) (7/8-2x)(3x+1/3)=0  

=> 7/8 - 2x = 0 hoặc 3x + 1/3 = 0

=> 2x = 7/8 hoặc 3x = -1/3

=> x = 7/16 hoặc x = -1/9
12)3x-2x^2=0  

=> x(3 - 2x) = 0

=> x = 0 hoặc 3 - 2x = 0

=> x = 0 hoặc x = 3/2

15 tháng 2 2020

\(a,\left(16-8x\right)\left(2-6x\right)=0\)

\(\hept{\begin{cases}16-8x=0\\2-6x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}}\)

\(b,\left(x+4\right)\left(6x-12\right)=0\)

\(\hept{\begin{cases}x+4=0\\6x-12=0\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\x=2\end{cases}}}\)

\(c,\left(11-33x\right)\left(x+11\right)=0\)

\(\hept{\begin{cases}11-33x=0\\x+11=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\x=-11\end{cases}}}\)

\(d,\left(x-\frac{1}{4}\right)\left(x+\frac{5}{6}\right)=0\)

\(\hept{\begin{cases}x-\frac{1}{4}=0\\x+\frac{5}{6}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\x=-\frac{5}{6}\end{cases}}}\)

\(e,\left(\frac{7}{8}-2x\right)\left(3x+\frac{1}{3}\right)=0\)

\(\hept{\begin{cases}\frac{7}{x}-2x=0\\3x+\frac{1}{3}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{4}\\x=-\frac{1}{9}\end{cases}}}\)

\(f,3x-2x^2=0\)

\(x\left(3-2x\right)=0\)

\(\hept{\begin{cases}x=0\\3-2x=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)

15 tháng 4 2020

1) (x+6)(3x-1)+x+6=0

⇔(x+6)(3x-1)+(x+6)=0

⇔(x+6)(3x-1+1)=0

⇔3x(x+6)=0

2) (x+4)(5x+9)-x-4=0

⇔(x+4)(5x+9)-(x+4)=0

⇔(x+4)(5x+9-1)=0

⇔(x+4)(5x+8)=0

3)(1-x)(5x+3)÷(3x-7)(x-1)

=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)

a) Ta có: \(\left(5x-15\right)\left(4+6x\right)=0\)

\(\Leftrightarrow5\left(x-3\right)\cdot2\cdot\left(2+3x\right)=0\)

\(\Leftrightarrow10\left(x-3\right)\left(2+3x\right)=0\)

Vì 10\(\ne\)0 nên

\(\left[{}\begin{matrix}x-3=0\\2+3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-2}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{3;\frac{-2}{3}\right\}\)

b) Ta có: \(\left(2x-1\right)\left(5x-6\right)\left(\frac{1}{2}x-\frac{3}{4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\5x-6=0\\\frac{1}{2}x-\frac{3}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\5x=6\\\frac{1}{2}x=\frac{3}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{6}{5}\\x=\frac{3}{4}:\frac{1}{2}=\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{6}{5};\frac{3}{2}\right\}\)

c) Ta có: \(\left(3-4x\right)\left(2x-\frac{3}{4}-x-\frac{4}{3}\right)=0\)

\(\Leftrightarrow\left(3-4x\right)\left(x-\frac{25}{12}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3-4x=0\\x-\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=3\\x=\frac{25}{12}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{4}\\x=\frac{25}{12}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{3}{4};\frac{25}{12}\right\}\)

d) Ta có: \(\left(\frac{2}{3}x-\frac{1}{6}\right)\left[5\left(x-1\right)-\frac{3}{2}-\frac{\left(2-3\right)\left(x-1\right)}{3}\right]=0\)

\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left[5x-5-\frac{3}{2}-\frac{-1\left(x-1\right)}{3}\right]=0\)

\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(5x-5-\frac{3}{2}-\frac{1-x}{3}\right)=0\)

\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(5x-\frac{13}{2}-\frac{1}{3}+\frac{x}{3}\right)=0\)

\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(\frac{15x}{3}-\frac{41}{6}+\frac{x}{3}\right)=0\)

\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(\frac{16x}{3}-\frac{41}{6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{2}{3}x-\frac{1}{6}=0\\\frac{16x}{3}-\frac{41}{6}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{2}{3}x=\frac{1}{6}\\\frac{16}{3}\cdot x=\frac{41}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{6}:\frac{2}{3}\\x=\frac{41}{6}:\frac{16}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\x=\frac{41}{32}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{4};\frac{41}{32}\right\}\)

3 tháng 3 2020

\(a.\left(5x-15\right)\left(4+6x\right)=0\\ \left[{}\begin{matrix}5x-15=0\\4+6x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-2}{3}\end{matrix}\right.\)

\(b.\left(2x-1\right)\left(5x-6\right)\left(\frac{1}{2}x-\frac{3}{4}=0\right)\\ \left[{}\begin{matrix}2x-1=0\\5x-6=0\\\frac{1}{2}x-\frac{3}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{6}{5}\\x=-\frac{3}{2}\end{matrix}\right.\)

c.

\(\left(3-4x\right)\left(2x-\frac{3}{4}-x-\frac{4}{3}\right)=0\\ \Leftrightarrow\left(3-4x\right)\left(x-\frac{25}{12}\right)=0\\ \left[{}\begin{matrix}3-4x=0\\x-\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{4}\\x=\frac{25}{2}\end{matrix}\right.\)

28 tháng 11 2021

b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)

\(\Rightarrow a^2+3-4a=0\)

=> (a - 3).(a - 1) = 0

=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)

Bình phương lên giải tiếp nhé!

c) Tương tư câu b nhé

 

7 tháng 7 2017

Mấy bài này đều là toán lớp 8 mà. Mình mới lớp 8 mà cũng làm được nữa là bạn lớp 9 mà không làm được afk?

27 tháng 5 2018

a) (3x - 2)(4x + 5) = 0

⇔ 3x - 2 = 0 hoặc 4x + 5 = 0

1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy phương trình có tập nghiệm S = {2/3;−5/4}

b) (2,3x - 6,9)(0,1x + 2) = 0

⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập hợp nghiệm S = {3;-20}

c) (4x + 2)(x2 +  1) = 0 ⇔ 4x + 2 = 0 hoặc x2 +  1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2

2) x2 +  1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)

Vậy phương trình có tập hợp nghiệm S = {−1/2}

d) (2x + 7)(x - 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2

2) x - 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5

Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}


 

1) Ta có: \(\left(3-x^2\right)+6-2x=0\)

\(\Leftrightarrow3-x^2+6-2x=0\)

\(\Leftrightarrow-x^2-2x+9=0\)

\(\Leftrightarrow x^2+2x-9=0\)

\(\Leftrightarrow x^2+2x+1=10\)

\(\Leftrightarrow\left(x+1\right)^2=10\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{10}\\x+1=-\sqrt{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{10}-1\\x=-\sqrt{10}-1\end{matrix}\right.\)

Vậy: \(S=\left\{\sqrt{10}-1;-\sqrt{10}-1\right\}\)

2) Ta có: \(5\left(2x-1\right)+7=4\left(2-x\right)+2\)

\(\Leftrightarrow10x-5+7=8-4x+2\)

\(\Leftrightarrow10x+4x=8+2+5-7\)

\(\Leftrightarrow14x=8\)

\(\Leftrightarrow x=\dfrac{4}{7}\)

Vậy: \(S=\left\{\dfrac{4}{7}\right\}\)

15 tháng 2 2020
https://i.imgur.com/NUn4fHf.jpg
15 tháng 2 2020

mk lưu nhầm ảnh ở bài dưới của câu