K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

=516,7-75,3=441,4

11 tháng 12 2021

cách giải là nhân,chia trước,cộng,trừ sau.

516,7-346,38:4,6=516,7-75,3

                            =441,4.

7 tháng 12 2021

câu b c nx đi mừ

 

7 tháng 12 2021

câu b c nx đi mà

 

7 tháng 12 2021

\(a,ĐK:x\ne2\\ b,A=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\\ c,x=\dfrac{2021}{1010}\Leftrightarrow A=\dfrac{3}{\dfrac{2021}{1010}-\dfrac{2020}{1010}}=\dfrac{3}{\dfrac{1}{1010}}=3030\)

a: =2421,6:4,8=504,5

b: =1728:9,6=180

c: =48,19+125,12=173,31

12 tháng 7 2021

a) 1,2+3.1,3=5,1

b) 0,2+2.0,5=1,2

 

12 tháng 7 2021

a) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\\\Rightarrow2\sqrt{31}>10\)

 

\(x^2+2x+5\)

\(=\left(x+1\right)^2+4\ge4\forall x\)

\(\Leftrightarrow\dfrac{5}{x^2+2x+5}\le\dfrac{5}{4}\forall x\)

Dấu '=' xảy ra khi x=-1

14 tháng 4 2022

a.Thế \(x=1\) vào P ta được:

\(P\left(1\right)=a.1^2+b.1+c=a+b+c\)

Thế \(x=-1\) vào P ta được:

\(P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\)

b.\(x^2+x^4+x^6+...+x^{100}\)

Thế \(x=-1\) ta được:

\(\left(-1\right)^2+\left(-1\right)^4+\left(-1\right)^6+...+\left(-1\right)^{100}\)

\(=1+1+1+...+1=50\)

25 tháng 3 2020

Bài 1: 

Ta có |x-8| > 0 với mọi x

=>A=37-|x-8| > 37 với mọi x

Vậy GTLN của A=37 với x-8=0 =>x=8

Bài 2 tương tự nhé

Học tốt :))

31 tháng 8 2021

\(A=x^2-20x+101=\left(x-10\right)^2+1\ge1\)

\(minA=1\Leftrightarrow x=10\)

\(B=2x^2+40x-1=2\left(x+10\right)^2-201\ge-201\)

\(minB=-201\Leftrightarrow x=-10\)

\(C=x^2-4xy+5y^2-2y+28=\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)+27=\left(x-2y\right)^2+\left(y-1\right)^2+27\ge27\)

\(minC=27\Leftrightarrow\)\(\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)

\(D=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)=\left(x^2-7x+10\right)\left(x^2-7x+10\right)=\left(x^2-7x\right)^2-100\ge-100\)

\(minD=100\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)

a: Ta có: \(A=x^2-20x+101\)

\(=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi x=10

b: ta có: \(B=2x^2+40x-1\)

\(=2\left(x^2+20x-\dfrac{1}{2}\right)\)

\(=2\left(x^2+20x+100-\dfrac{201}{2}\right)\)

\(=2\left(x+10\right)^2-201\ge-201\forall x\)

Dấu '=' xảy ra khi x=-10