Tìm x,y nguyên thoả mãn phương trình: 3x-1+1=2y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
Để pt có nghiệm khi duy nhất khi \(\frac{1}{2}\ne-\frac{2}{1}\)* luôn đúng *
Ta có : \(\hept{\begin{cases}x-2y=m+3\\2x+y=2m+1\end{cases}\Leftrightarrow\hept{\begin{cases}2x-4y=2m+6\\2x+y=2m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}-5y=5\\x-2y=m+3\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=m+1\end{cases}}}\)
Thay vào biểu thức trên ta có : \(3x+2y>3\Rightarrow3\left(m+1\right)-2>3\)
\(\Leftrightarrow3m+3-2>3\Leftrightarrow3m>2\Leftrightarrow m>\frac{2}{3}\)
giả sử (x,y) là nghiệm thỏa mãn đề bài, do đó
\(\hept{\begin{cases}3x+my=10\\x-y=5\\5x+2y=32\end{cases}}\)từ hai phương trình cuối ta có hệ \(\hept{\begin{cases}x-y=5\\5x+2y=32\end{cases}}\Rightarrow\hept{\begin{cases}x=6\\y=1\end{cases}}\)
thay x=6 y=1 vào phương trình đầu tiên ta có
\(3.6+m.1=10\Leftrightarrow m=4\)
\(\left(3x-5\right)⋮\left(x+2\right)\)
\(\Rightarrow3.\left(x+2\right)-11⋮\left(x+2\right)\)
Vì \(3.\left(x+2\right)⋮\left(x+2\right)\)
\(\Rightarrow11⋮\left(x+2\right)\)
\(\Rightarrow\left(x+2\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự lập bảng :) T lười qá