sốtự nhiên n để2n+7chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
(n+7)⋮(n+1)
=> (n+1)+7 ⋮ (n+1)
=> (n+1) ⋮ Ư(7) = 1,7
TH1: n+1=1
=> n=0
TH2:
n+1=7
=> n=6
Vậy n ∈ 0,6
2n+1 \(⋮\)n - 3
<=> 2n - 6 + 7 \(⋮\)n - 3
Vì 2n - 6 \(⋮\)n - 3 mà 2n - 6 + 7 \(⋮\)n - 3 nên :
=> 7 \(⋮\)n - 3
=> n - 3 \(\in\){ -1;-7:1;7}
=> n \(\in\){ 2;-4;4;10}
2n+7 = 2(n+1) +5 chia hết cho n+1 khi 5 chia hết cho n+1
n+1 thuộc Ư(5) = {1;5}
+ n+1 = 1 => n =0
+ n+1 =5 => n =4
Vậy n= 0 ;hoặc n = 4
2n+7 \(⋮\)n+2
=> n+2 \(⋮\)n+2
=> ( 2n +7) - (n+2) \(⋮\)n+2
=> ( 2n+7) - 2(n+2) \(⋮\)n+2
=> 2n+7 - 2n -4 \(⋮\)n+2
=> 3 \(⋮\)n+2
=> n+2 thuộc Ư(3)= { 1;3}
=> n thuộc { -1; 1}
Vậy...
Vì n + 2 chia hết ( n + 2 )
\(\Rightarrow\)2n + 4 chia hết ( n + 2 )
\(\Rightarrow\)( 2n + 7 ) - ( 2n + 4 ) chia hết ( n + 2 )
\(\Rightarrow\) 3 chia hết ( n + 2 )
\(\Rightarrow\)n + 2 \(\in\) Ư(3) = { 1 ; 2 }
\(\Rightarrow\)n \(\in\) { - 1 ; 0 }
Vì n \(\in\) N
\(\Rightarrow\)n = 0 .
2n^2 - n + 2 2n+1 n-1 2n^2 + n -2n + 2 -2n - 1 3
Để đây là phép chia hết thì \(2n+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow2n\in\left\{-4;-2;0;2\right\}\)
\(\Rightarrow n\in\left\{-2;-1;0;1\right\}\)
stn n đó như thế nào, chứ tìm stn n để 2n+7 chia hết cho 13 thì nhìu lắm
2n+7chia het 13=>2n+7 thuoc uoc 13 ={1;13}
ta co bang gia tri:
vay n= -3 hoac n=3