Cho đẳng thức sau: a.(a+1).(a+2).(a+3)......(a+2001)=2001 (a>0). Chứng minh rằng: a<1/2000!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
18/31 giữ nguyên . 181818/313131=18 nhân 10101/31 nhân 10101 = 18/31
18/31=181818/313131
phần a nhé
1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)=3+(a/b+b/a)+(b/c+c/b)+(a/c+c/a) do a+b+c=1
áp dụng bdt cosi cho các so dương a/b,b/a,a/c,c/a,b/c,c/b
a/b+b/a >=2
b/c+c/b>=2
a/c+c/a>=2
cộng hết vào suy ra 1/a+1/b+1/c >=9
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....