K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2021

có : abc + cba +cab : hết 111

100 a +10b+1c+100b+10c+1a+100c+10b+1a

=(100 a +10b+1c) + (100b+10c+1a) + ( 100c+10b+1a ) 

= 111 abc + 111bca+111cab : hết 111 

= 111 . ( abc + bca + cab ) : hết 111

vậy , abc + bca + cab : hết cho 111 

29 tháng 6 2017

Ta có: abc + bca + cab

=        100.a + 10.b + c + 100.b + 10.c + a + 100.c + 10.a + b

=        (100.a + a + 10.a) + (10.b + 100.b + b) + (c + 10.c + 100.c)

=        111.a + 111.b + 111.c

=         111.(a+b+c)

Do 111.(a+b+c) chia hết cho (a+b+c)

Nên (abc+bca+cab) chia hết cho (a+b+c) (Bài toán được chứng minh)

29 tháng 6 2017

Ta có :

( abc + bca + cab )

= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

= 111a + 111b + 111c

= 111 . ( a + b + c ) \(⋮\)( a + b + c ) → ĐPCM

Vậy, ................

15 tháng 12 2017

có : abc + cba +cab : hết 111

100 a +10b+1c+100b+10c+1a+100c+10b+1a

=(100 a +10b+1c) + (100b+10c+1a) + ( 100c+10b+1a ) 

= 111 abc + 111bca+111cab : hết 111 

= 111 . ( abc + bca + cab ) : hết 111

vậy , abc + bca + cab : hết cho 111 

mất rất nhìu thời gian TT  TT

15 tháng 12 2017

abc+bca+cab=100a+10b+c+100b+10c+a+100c+10a+b

=111a+111b+111c=111(a+b+c)chia hết cho 111 (đpcm)

21 tháng 3 2020

Ta có: \(\overline{abc}⋮37\Leftrightarrow100a+10b+c⋮37\)(1)

+) (1) => \(10\left(100a+10b+c\right)⋮37\)

<=> \(100b+10c+a+999a⋮37\) mà \(999a=37.27a⋮37\)

=> \(100b+10c+a⋮37\Leftrightarrow\overline{bca}⋮37\)

+) (1) => \(100\left(100a+10b+c\right)⋮37\)

<=> \(\left(100c+10a+b\right)+999\left(10a+b\right)⋮37\)mà \(999\left(10a+b\right)=37.27\left(10a+b\right)⋮37\)

=> \(\overline{cab}=100c+10a+b⋮37\)

5 tháng 12 2017

Ta có:

abc = a100 + b10 + c

bca = b100 + c10 + a

cab = c100 + a10 + b

=> abc + bca + cab = (a100 + b100 + c100) + (b10 + c10 + a10) + (c + a + b) = (a + b + c)*100 + (a + b + c)*10 + (a + b + c)*1

= (a + b + c) * ( 100 + 10 + 1) = (a + b + c)*111 chia hết cho 111

=> abc + cab + bca chia hết cho 111

5 tháng 12 2017

abc + bca + cab

= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

= (100+10+1)a + (100+10+1)b + (100+10+1)c

= 111a + 111b + 111c = 111(a+b+c)

Vậy abc + bca + cab chia hết cho 111

16 tháng 5 2016

a)abc chia hết 27

=>abc chia hết 3 và 9

mà abc chia hết 9 thì 100% chia hết 3

mà abc chia hết 9=>(a+b+c) chia hết 9

=>(b+c+a=a+b+c) chia hết 9 => bca chia hết 3

=>bca chia hết 27

16 tháng 5 2016

a ) vì abc chia hết cho 27 

=> bca chia hết cho 27 ( hiển nhiên đúng )

28 tháng 10 2021

\(\overline{abc}+\overline{bca}+\overline{cab}\\ =100a+10b+c+100b+10c+a+100c+10a+b\\ =111a+111b+111c=111\left(a+b+c\right)⋮111\)

5 tháng 1 2017

abc = a . 100 + b . 10 + c
bca = b . 100 + c . 10 + a
cab = c . 100 + a . 10 + b

\(\Rightarrow\) abc + bca + cab = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 111c
\(\Rightarrow\) 111 . ( a + b + c ) \(\ge\) 111 ( điều phải chứng minh )

22 tháng 8 2016

abc+bca+cab=100a+10b+c+100b+10c+a+100c+10a+b=111a+111b+111c=111(a+b+c)

Vì là số có 3 chữ số nên \(\hept{\begin{cases}10>a\ge1,10>b\ge0,10>c\ge0\\10>b\ge1,10>b\ge0,10>c\ge0\\10>c\ge1,10>b\ge0,10>c\ge0\end{cases}}\)

=>\(a+b+c\ge1\)=>\(111\left(a+b+c\right)\ge111\)

hay abc+bca+cab\(\ge111\)

22 tháng 8 2016

lon hon