tìm x thỏa mãn : (căn x-4)(|x+2|-1)(x2-3))=0
GIÚP MÌNH VỚIIIIIIIIIIIIIIII
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ac=-6< 0\Rightarrow\) phương trình đã cho luôn luôn có 2 nghiệm pb (trái dấu)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-6\end{matrix}\right.\)
Thế vào đề bài:
\(m-2-3\left(-6\right)=0\)
\(\Leftrightarrow m+16=0\Leftrightarrow m=-16\)
Thầy phân tích cho e kĩ hơn ở p [ac=-6] đc ko ạ. Tại sao mk ko tính Δ= [m^2-4m+28 kết quả tính đc] mà p làm như thế ạ
a: \(A=\left(\dfrac{4}{x}-1\right):\left(1-\dfrac{x-3}{x^2+x+1}\right)\)
\(=\dfrac{4-x}{x}:\dfrac{x^2+x+1-x+3}{x^2+x+1}\)
\(=\dfrac{4-x}{x}\cdot\dfrac{x^2+x+1}{x^2+4}=\dfrac{\left(4-x\right)\left(x^2+x+1\right)}{x\left(x^2+4\right)}\)
b: x^4-7x^2-4x+20=0
=>(x-2)^2(x^2+4x+5)=0
=>x=2
Khi x=2 thì \(A=\dfrac{\left(4-2\right)\left(4+2+1\right)}{2\left(4+4\right)}=\dfrac{7}{8}\)
a) PT \(\Leftrightarrow\left(x+1\right)^4+\sqrt{\left(x+1\right)^2+9}=3\).
Ta có \(\left(x+1\right)^4+\sqrt{\left(x+1\right)^2+9}\ge\sqrt{9}=3\).
Đẳng thức xảy ra khi và chỉ khi x = -1.
Vậy..
b) \(x^2=\sqrt{x^3-x^2}+\sqrt{x^2-x}\)
Đk: \(\left\{{}\begin{matrix}x^3-x^2\ge0\\x^2-x\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(x-1\right)\ge0\\x\left(x-1\right)\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x=0\end{matrix}\right.\\\left[{}\begin{matrix}x\ge1\\x\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x\ge1\end{matrix}\right.\)
Thay x=0 vào pt thấy thỏa mãn => x=0 là một nghiệm của pt
Xét \(x\ge1\)
Pt \(\Leftrightarrow x^4=\left(\sqrt{x^3-x^2}+\sqrt{x^2-x}\right)^2\le2\left(x^3-x\right)\) (Theo bđt bunhiacopxki)
\(\Leftrightarrow x^4\le2x\left(x^2-1\right)\le\left(x^2+1\right)\left(x^2-1\right)=x^4-1\)
\(\Leftrightarrow0\le-1\) (vô lí)
Vậy x=0
c) \(\sqrt{x-1}+\sqrt{3-x}+x^2+2x-3-\sqrt{2}=0\) (đk: \(1\le x\le3\))
Xét x-1=0 <=> x=1 thay vào pt thấy thỏa mãn => x=1 là một nghiệm của pt
Xét \(x\ne1\)
Pt\(\Leftrightarrow\dfrac{x-1}{\sqrt{x-1}}+\dfrac{1-x}{\sqrt{3-x}+\sqrt{2}}+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3\right)=0\) (1)
Xét \(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3\)
Có \(\sqrt{3-x}+\sqrt{2}\ge\sqrt{2}\)
\(\Leftrightarrow\dfrac{-1}{\sqrt{3-x}+\sqrt{2}}\ge-\dfrac{1}{\sqrt{2}}\)
Có \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-1}}>0\\x+3\ge4\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3>0-\dfrac{1}{\sqrt{2}}+4>0\)
Từ (1) => x-1=0 <=> x=1
Vậy pt có nghiệm duy nhất x=1
Hai bài bị trùng nhau nên các bạn nhìn ảnh hay văn bản đều như nhau ạ
c: =>x+2>0
hay x>-2
d: =>-4<=x<=3
e: =>\(x\in\varnothing\)
f: \(\Leftrightarrow\left[{}\begin{matrix}x>4\\x< -6\end{matrix}\right.\)
\(\sqrt{x+4\sqrt{x-1}+3}-\sqrt{4x+4\sqrt{x-1}-3}=1\)(đk:\(1\le x< 2\)) Lý do có điều kiện này là nhờ vào việc VT=1>0
\(\Leftrightarrow\sqrt{\left(x-1\right)+4\sqrt{x-1}+4}-\sqrt{4\left(x-1\right)+4\sqrt{x-1}+1}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+2\right)^2}-\sqrt{\left(2\sqrt{x-1}+1\right)^2}=1\)
\(\Leftrightarrow\left(\sqrt{x-1}+2\right)-\left(2\sqrt{x-1}+1\right)=1\)
\(\Leftrightarrow\sqrt{x-1}=0\)
\(\Leftrightarrow x=1\)(thõa mãn điều kiện)
Ta có : \(\sqrt{x+4\sqrt{x-1}+3}-\sqrt{4x+4\sqrt{x-1}-3}=1\) ( ĐK : \(x\ge1\) )
\(\Leftrightarrow\sqrt{\left(x-1\right)+4\sqrt{x-1}+4}-\sqrt{4.\left(x-1\right)+4.\sqrt{x-1}+1}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+2\right)^2}-\sqrt{\left(2\sqrt{x-1}+1\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}+2\right|-\left|2\sqrt{x-1}+1\right|=1\)
\(\Leftrightarrow\sqrt{x-1}+2-2\sqrt{x-1}-1=1\)
\(\Leftrightarrow\sqrt{x-1}=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\) ( Thỏa mãn )
Ta có: \(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}}{4-\sqrt{a}}\)
a) ĐKXĐ: \(a\ne4;a\ne16;a\ge0\)
\(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}-\dfrac{4\sqrt{a}}{\sqrt{a}-4}\)
\(P=\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}-\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(P=\dfrac{a+3\sqrt{a}+2\sqrt{a}+6-a+2\sqrt{a}+\sqrt{a}-2-4\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
\(P=\dfrac{4\sqrt{a}+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
\(P=\dfrac{4\sqrt{a}+4}{a-4}\)
b) Thay x=9 vào P ta có:
\(P=\dfrac{4\cdot\sqrt{9}+4}{9-4}=\dfrac{16}{5}\)
c) \(P< 0\) khi:
\(\dfrac{4\sqrt{x}+4}{a-4}< 0\)
Mà: \(4\sqrt{x}+4>0\)
\(\Rightarrow a-4< 0\)
\(\Rightarrow a< 4\)
kết hợp với Đk ta có:
\(0\le x< 4\)