CMR : Phân số n / n + 1 ( n \(\in\)N* ) là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các phân số đã cho có dạng \(\frac{a}{a+\left(n+2\right)}\)
Để \(\frac{a}{a+\left(n+2\right)}\) là phân số tối giản \(\Rightarrow\left(a;a+n+2\right)=1\)
\(\Rightarrow\left(a;n+1\right)=1\) Mà n nhỏ nhất
\(\Rightarrow\) n + 2 là số nguyên tố nhỏ nhất > 100 \(\Rightarrow n+2=101\)
\(\Rightarrow n=99\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>aa+(n+2)
Để aa+(n+2) là phân số tối giản ⇒(a;a+n+2)=1
⇒(a;n+1)=1 Mà n nhỏ nhất
⇒ n + 2 là số nguyên tố nhỏ nhất > 100 ⇒n+2=101
Gọi UCLN(n+1,n-3)=d
Ta có:n+1 chia hết cho d
n-3 chia hết cho d
=>(n+1)-(n-3) chia hết cho d
=>4 chia hết cho d
=>d=1,2,4
Nếu d=4 thì n+1=4k(k thuộc N) =>n=4k-1
n-3=4l(l thuộc N) =>n=4l+3=4l-1+4
Để d=1 thì n\(\ne\)4k-1
Nếu d=2 thì n+1=2k(k thuộc N) =>n=2k-1
n-3=2l(l thuộc N) =>n=2l+3 =2l-1+4
Để d=1 thì n\(\ne\)2k-1
Gọi UCLN(21n+4,14n+3)=d
Ta có:21n+4 chia hết cho d
14n+3 chia hết cho d
=>2(21n+4) chia hết cho d
3(14n+3) chia hết cho d
=>42n+8 chia hết cho d
42n+9 chia hết cho d
=>(42n+9)-(42n+8) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy \(\frac{21n+4}{14n+3}\) tối giản
Goi d là ƯCLN ( 21n + 4 ; 14n + 3 )
=> 21n + 4 ⋮ d <=> 42n + 8 ⋮ d
=> 14n + 3 ⋮ d <=> 42n + 9 ⋮ d
=> [ ( 42n + 8 ) - ( 42n + 9 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN (21n + 4; 14n + 3) = 1 => \(\frac{21n+4}{14n+3}\) là phân số tối giản
Gọi UCLN(n,n+1)=d
Ta có:n chia hết cho d
n+1 chia hết cho d
=>(n+1)-n chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy phân số n/n+1 tối giản