K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2023

\(a)\dfrac{7}{8}=\dfrac{7\times9}{8\times9}=\dfrac{63}{72}\)

\(\dfrac{3}{9}=\dfrac{3\times8}{9\times8}=\dfrac{24}{72}\)

Do : \(\dfrac{63}{72}>\dfrac{24}{72}\) nên \(\dfrac{7}{8}>\dfrac{3}{9}\)

Không thì bạn có thể rút gọn 3/9 đi làm cho nó gọn ạ.

\(b)\) Ta thấy : \(\dfrac{2023}{2021}>1\) ( vì tử lớn hơn mẫu )

                   \(\dfrac{2021}{2022}< 1\) ( vì tử bé hơn mẫu )

Do đó : \(\dfrac{2023}{2021}>\dfrac{2021}{2022}\)

\(c)\dfrac{5}{6}=\dfrac{5\times7}{6\times7}=\dfrac{35}{42}\)

\(\dfrac{6}{7}=\dfrac{6\times6}{7\times6}=\dfrac{36}{42}\)

Do : \(\dfrac{36}{42}>\dfrac{35}{42}\)  nên \(\dfrac{6}{7}>\dfrac{5}{6}\)

11 tháng 9 2023

không câu SP nhé

9 tháng 8 2019

bài 1:

ssh của A là:

(151-3):2+1=75

A=(151+3)x75:2=5775

đáp số: 5775

4 tháng 5 2021

Ta có:

\(A=\dfrac{7\left(4-7^{2020}\right)}{7^{2021}}+\dfrac{5+7^{2021}}{7^{2021}}\)

\(A=\dfrac{28-7^{2021}+5+7^{2021}}{7^{2021}}=\dfrac{33}{7^{2021}}\)

Ta có: \(B=\dfrac{7^2}{7^{2021}}=\dfrac{49}{7^{2021}}\)

=> B>A

 

4 tháng 5 2021

Thank you☺

NA
Ngoc Anh Thai
Giáo viên
8 tháng 5 2021

\(A=\dfrac{2021^{10}-2021+2020}{2021^9-1}\\ =\dfrac{2021\left(2021^9-1\right)+2020}{2021^9-1}\\ =2021+\dfrac{2020}{2021^9-1}\\ B=\dfrac{2021^{11}-1}{2021^{10}-1}=2021+\dfrac{2020}{2021^{10}-1}\)

Ta có:

 \(2021^9-1< 2021^{10}-1\\ \Rightarrow\dfrac{2020}{2021^9-1}>\dfrac{2020}{2021^{10}-1}\)

Do đó A > B.

 

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

So sánh 3 số hay sao đây bạn?

AH
Akai Haruma
Giáo viên
27 tháng 9 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu để của bạn hơn nhé.

Ta có:

\(A=\frac{4-7^{2020}}{7^{2020}}+\frac{5+7^{2021}}{7^{2021}}\) và \(B=\frac{1}{7^{2019}}\)

Ta xét 2 trường hợp:

\(TH1:\frac{4-7^{2020}}{7^{2020}}=\frac{-7^{2020}+4}{7^{2020}}=-1+\frac{4}{7^{2020}}\)

\(TH2:\frac{5+7^{2021}}{7^{2021}}=1+\frac{5}{7^{2021}}\)

\(\Rightarrow\left(-1+\frac{4}{7^{2020}}\right)+\left(1+\frac{5}{7^{2021}}\right)\)

\(\Rightarrow\frac{4}{7^{2020}}+\frac{5}{7^{2021}}\)

\(Do:\)

\(\frac{4}{7^{2020}}>\frac{1}{7^{2019}}\)

\(\frac{5}{7^{2021}}>\frac{1}{7^{2019}}\)

Nên:\(\frac{4}{7^{2020}}+\frac{5}{7^{2021}}>\frac{1}{7^{2019}}\)

\(\Rightarrow A>B\)

\(5A=\dfrac{5^{2022}+5}{5^{2022}+1}=1+\dfrac{4}{5^{2022}+1}\)

Sửa đề: \(B=\dfrac{5^{2020}+1}{5^{2021}+1}\)

=>\(5B=\dfrac{5^{2021}+5}{5^{2021}+1}=1+\dfrac{4}{5^{2021}+1}\)

5^2022>5^2021

=>5^2022+1>5^2021+1

=>5A<5B

=>A<B