tìm x sao cho:
a) 1-2x<7
b) (x-1)*(x-2)>0
c) (x-2)^2 * (x+1) * (x-4)<0
d) 5/x<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: \(\Leftrightarrow x+2\in\left\{3;9\right\}\)
hay \(x\in\left\{1;7\right\}\)
a) (x - 140) : 7 = 33 - 23 . 3
(x - 140) : 7 = 27 - 8 . 3 = 27 - 24 = 3
x - 140 = 3 x 7 = 21
x = 21 + 140 = 161
b) x3 . x2 = 28 : 23
x5 = 25
=> x = 2
c) (x + 2) . ( x - 4) = 0
x = -2 hoặc 4
d) 3x-3 - 32 = 2 . 32 =
3x-3 - 9 = 2 . 9 = 18
3x-3 = 18 + 9 = 27
3x-3 = 33
=> x - 3 = 3
x = 3 + 3 = 6
2:
a: 5/x-y/3=1/6
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)
=>30-2xy=x
=>x(2y+1)=30
=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}
=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}
b: x/6-2/y=1/30
=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)
=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)
=>5xy-60=y
=>y(5x-1)=60
=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)
=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}
a) (x - 1)2 = 1.
<=> x - 1 = 1 hoặc x - 1 = -1.
<=> x = 2 hoặc x = 0.
b) 72x - 6 = 49.
<=> 72x - 6 = 72.
<=> 2x - 6 = 2.
<=> x = 4.
c) (2x - 16)7 = 128.
<=> (2x - 16)7 = 27.
<=> 2x - 16 = 2.
<=> x = 9.
a) Để y nguyên thì \(6x-4⋮2x+3\)
\(\Leftrightarrow-13⋮2x+3\)
\(\Leftrightarrow2x+3\in\left\{1;-1;13;-13\right\}\)
\(\Leftrightarrow2x\in\left\{-2;-4;10;-16\right\}\)
hay \(x\in\left\{-1;-2;5;-8\right\}\)
a) \(1-2x< 7\)
\(\Rightarrow2x>-6\)
\(\Rightarrow x>-3\)
Vậy \(x>-3\)
b) \(\left(x-1\right)\left(x-2\right)>0\)
\(\Rightarrow\hept{\begin{cases}x-1>0\\x-2>0\end{cases}}\)
hoặc \(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x>1\\x>2\end{cases}}\)
hoặc \(\hept{\begin{cases}x< 1\\x< 2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>2\\x< 1\end{cases}}\)
Vậy \(x>2\)hoặc \(x< 1\)
c) \(\left(x-2\right)^2\left(x-1\right)\left(x-4\right)< 0\left(1\right)\)
Vì \(\left(x-2\right)^2\ge0\forall x\)nên từ \(\left(1\right)\): \(\Rightarrow\left(x-2\right)^2>0\)
\(\Rightarrow\orbr{\begin{cases}x-2>0\\x-2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>2\\x< 2\end{cases}}\)
Với :
\(\Rightarrow\hept{\begin{cases}x+1>3>0\\x-4>-2\end{cases}}\)
Nếu \(-2< x-4< 0\)thì \(2< x< 4\)
\(\Rightarrow\left(x-2\right)^2\left(x+1\right)\left(x-4\right)< 0\)(Thỏa mãn)
Nếu \(x-4\ge0\)thì \(x\ge4\)
\(\Rightarrow\left(x-2\right)^2\left(x+1\right)\left(x-4\right)\ge0\)(Không thỏa mãn)
\(\Rightarrow\hept{\begin{cases}x+1< 3\\x-4< -2\end{cases}}\)
Nếu \(0< x+1< 3\)thì \(-1< x< 2\)
\(\Rightarrow\left(x-2\right)^2\left(x+1\right)\left(x-4\right)< 0\)(Thỏa mãn)
Nếu \(x+1\le0\)thì \(x\le-1\)
\(\Rightarrow\left(x-2\right)^2\left(x+1\right)\left(x-4\right)\ge0\)(Không thỏa mãn)
Vậy \(2< x< 4\)hoặc \(-1< x< 2\)
d) \(\frac{5}{x}< 1\)
\(\Rightarrow5< x\)
Vậy \(x>5\)