cho hình vuông abcd lấy điểm m bất kì trên cạnh bc. Qua a kẻ đường thẳng vuông góc với am cắt cd tại n. Tính tỉ số am/mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBAN và ΔADE có
góc BAN=góc ADE
AB=AD
góc ABN=góc DAE
=>ΔBAN=ΔADE
=>AN=DE=AM
mà AB=CD
nên BM=CE
mà BM//CE
nên BMEC là hình bình hành
mà góc B=90 độ
nên BMEC là hình chữ nhật
Gọi O là giao của BE và CM
=>OB=OE=OC=OM
ΔBHE vuông tạiH có HO là trung tuyến
nên HO=OB=OE
=>HO=OC=OM
=>ΔMHC vuông tại H
=>góc MHC=90 độ
a) Xét tam giác OEB và tam giác OMC có:
góc OBE = góc OCM (t/c đường chéo hv)
OC = OB ( nt)
EB = MC (gt)
Vậy tam giác OEB = tam giác OMC (c-g-c)
=> EO = MO (1) và góc EOB = góc MOC
mà góc BOC = góc BOM + góc MOC = 90 độ
=> góc EOM = góc EOB + góc BOM = 90 độ (2)
Từ (1),(2) => tam giác OEM vuông cân
b) Ta có: AB//CN (N thuộc DC)
ÁP dụng định lí Ta - let tá được:
AM/MN= BM/MC mà BM=AE và MC=BE (gt)
=> AM/MN = AE/BE
=> EM//BN (đ/l Ta - let đảo)
Phần còn lại mình còn đang suy nghĩ.
https://www.slideshare.net/PhamNguyenThucLinh/hc-sinh-gii-hnh-hc-8
Xét △AND và △AMB có:
∠NAD = ∠MAB (cùng phụ ∠DAM)
AD=AB (ABCD là hv)
∠ADN = ∠ABM (=90*)
△AND = △AMB (g.c.g)
=>AM=AN mà ∠MAN = 90*=>△AMN vuông cân tại A
Theo định lí Py-ta-go có:
AM2+AN2 = MN2 => 2AM2 = MN2 => \(\dfrac{AM^2}{MN^2}\)=\(\dfrac{1}{2}\) =>\(\dfrac{AM}{MN}\)=\(\dfrac{\sqrt{2}}{2}\)