K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔAHB vuông tại H 

=>AH<AB

ΔAHC vuông tại H

=>AH<AC

=>AH+AH<AB+AC

=>2AH<AB+AC

=>\(AH< \dfrac{1}{2}\left(AB+AC\right)\)

b: Xét ΔABC có

BM,CN là trung tuyến

BM cắt CN tại G

=>G là trọng tâm

=>BG=2GM và CG=2GN

=>BG=GE và CG=GF

=>G là trung điểm của BE và G là trung điểm của CF

Xét tứ giác BFEC có

G là trung điểm chung của BE và CF

=>BFEC là hình bình hành

=>EF=BC

2 tháng 8 2016

a) xét tam giác AHB vuông ở H

có AH<AB(quan hệ giữa đường xiên và đg vuông góc) 

xét tam giác AHC vuông ở H

có AH<AC(quan hệ giữa đường xiên và đg vuông góc)

ta cộng 2 vế AH<AB và AH<AC ta đc:

AH+AH<AB+AC

2AH<AB+AC

AH<\(\frac{AB+AC}{2}\)

hay AH<\(\frac{1}{2}.\left(AB+AC\right)\)

b) ta có : 

- NG=\(\frac{1}{3}NC\)(t/c 3 đường trung tuyến trong tam giác) hay NG\(=\frac{1}{2}CG\)

NG=\(\frac{1}{2}CG\)

-->2NG=CG

mà 2NG=NG+NG

      NF=NG

-->NF+NG=CG hay FG=CG

- MG=\(\frac{1}{3}MB\)(t/c 3 đường trung tuyến trong tam giác) hay MG=\(\frac{1}{2}GB\)

MG=\(\frac{1}{2}GB\)

--> 2MG=GB

mà 2MG=MG+MG

MG=ME

--> MG+ME=GBhay GE=GB

xét 2 tam giác FGE và CGB có:

FG=GC(chứng minh trên )

góc FGE=góc CGE(đối đỉnh)

GE=GB(chứng minh trên )

--> 2 tam giác FGE=CGB(c.g.c)

--> EF=BC(2 cạnh tương ứng)

3 tháng 8 2016

xét tam giác AHB vuông ở H

có AH < AB ( qh giữa đường xiên và đường vuông góc )

xét tam giác AHC vuông ở H

có : AH < ÁC ( qh giữa đường xiên và đường vuông góc )

Ta cộng hai vế AH < AB+AC

2AH< AB+AC

AH< \(\frac{AB+AC}{2}\) 

hay AH < \(\frac{1}{2}\) . ( AB+AC )

b) ta có G là giao điểm của 2 đg trung tuyến trong tg ABC -> G là trọng tâm của tg ABC

 ta có BM là trung tuyến ứng với cạnh đáy của tg ABC 

=> BG= 2GM mà GM=ME

=> BG= GM+ME=GE

ta có CN là trung tuyến ứng với cạnh AC của tg ABC

=> CG=2GN mà GN=GF

=>CG=GN +NF=GF

Xét tg GFE và tg GCB có:

CG=FG ( cmt) ;

góc FGE = góc CGB ( đối đỉnh );

GE=GB ( cmt )

=> tg GFE = tg GCB ( c-g-c )

=> EF=BC